화학공학소재연구정보센터
Journal of Chemical Physics, Vol.118, No.7, 3368-3375, 2003
Air shear driven flow of thin perfluoropolyether polymer films
We have studied the wind driven movement of thin perfluoropolyether (PFPE) polymer films on silicon wafers and CNx overcoats using the blow-off technique. The ease with which a liquid polymer film moves across a surface when sheared is described by a shear mobility chi(S), which can be interpreted both in terms of continuum flow and in terms of wind driven diffusion. Generally, we find that the movement of PFPE films can be described as a flow process with an effective viscosity, even when the film thickness is smaller than the polymer's diameter of gyration. Only in the special case of sparse coverage of a polymer with neutral end groups is the motion better described by a wind driven diffusion process. The addition of alcohol end groups to the PFPE polymer chain results in strong interactions with the substrate, creating a restricted layer having an effective viscosity an order of magnitude larger than the mobile layer that sits on top of the restricted layer. (C) 2003 American Institute of Physics.