Journal of the Korean Industrial and Engineering Chemistry, Vol.14, No.2, 176-181, April, 2003
DGEBA/PMR-15 블렌드계의 경화거동 및 열안정성에 관한 연구
Studies on Cure Behavior and Thermal Stability of DGEBA/PMR-15 Blend System
E-mail:
초록
본 연구에서는 DGEBA/PMR-15 블렌드계에서 조성비가 경화거동 및 열안정성에 미치는 영향에 대하여 고찰하였다. 경화거동은 Near-IR과 DSC를 이용하였고, 열안정성은 DMA와 TGA를 통하여 고찰하였다. DGEBA에 대한 경화제로는 DDM를 사용하였으며, PMR-15의 조성비는 0, 5, 10, 15, 그리고 20 phr로 하였다. 본 실험 결과, PMR-15의 함량비가 증가함에 따라 전화율이 약간씩 감소하는 경향을 보였으며, 경화 활성화 에너지(Ea)는 함량비에 따라 점차 증가하다가 10 phr에서 최고값을 나타내었다. 그리고 DGEBA/PMR-15 시스템의 TGA 분석 결과 열분해 개시온도(initial decomposition temperature, IDT)와 적분 열분해 진행 온도(integral procedural decomposition temperature, IPDT) 등에 입각한 열안정성은 PMR-15의 함량이 증가할수록 증가하였다. 기계적 특성인 KIC는 Ea와 유사한 경향을 나타내었는데 이는 PMR-15의 조성의 변화가 분자들간의 상호작용으로 인한 가교구조 형성에 영향을 미쳤기 때문인 것으로 사료된다.
In this work, the effect of composition in a diglycidylether of bisphenol A (DGEBA) and polyimide (PMR-15) blend system on the cure behaviors and thermal stabilities were investigated. The cure behaviors were studied in Near-IR and DSC measurements, and thermal stabilities were also carried out by DMA and TGA analyses. DDM (4,4`-diamino diphenyl methane) was used as a curing agent for DGEBA, and the content of PMR-15 in the mixture was 0, 5, 10, 15, and 20 phr. As a result, the conversion (α) was slightly decreased as the content of PMR-15 was increased. The maximum cure activation energy (Ea) occurred at 10 phr of PMR-15. From the TGA results of DGEBA/PMR-15 blend system, the thermal stabilities based on the initial decomposition temperature (IDT) and integral procedural decomposition temperature (IPDT) rose with increasing the PMR-15 composition. The critical stress intensity factor (KIC) showed a similar behavior with Ea, possibly due to the cross-linking developed by the interactions between inter-molecules of the polymer chains.
- Delmonte J, Hoggatt JT, May CA, Epoxy Resin, Marcel Dekker, New York (1988)
- Mijovic J, Kim J, Slaby J, J. Appl. Polym. Sci., 29, 144 (1984)
- Park SJ, Interfacial Forces and Fields: Theory and Applications, ed. J.P. Hsu, chap. 9, Marcel Dekker, New York (1999)
- Bauer RS, Epoxy Resin Chemistry, ACS Advances in Chemistry Series No. 114, American Chemical Society, Washington D.C. (1979)
- Lee H, Nevile K, Handbook of Epoxy Resins, McGraw-Hill, New York (1967)
- Kim YC, Park SJ, Lee JR, Polym. J., 29, 759 (1997)
- Park SJ, Kim TJ, Lee JR, J. Polym. Sci. B: Polym. Phys., 38(16), 2114 (2000)
- Rosato SV, Dimattia DP, Rosato DV, Disigning with Plastics and Composites, Nostrand Reinhold, New York (1991)
- Verchere D, Pascault JP, Satereau H, Moschair SM, Riccardi CC, Williams JJ, J. Appl. Polym. Sci., 42, 701 (1991)
- Park SJ, Park WB, Lee JR, Polym. J., 31, 28 (1999)
- Wheeler RL, The Epoxy Resin Formulators Training Manual, The Society of the Plastics Industry Inc., New York (1984)
- Odegard G, Kumosa M, Combust. Sci. Technol., 60, 2979 (2000)
- Xie W, Pan WP, Chuang KC, Thermochim. Acta, 367, 143 (2001)
- Finzel MC, Delong J, Hawley MC, J. Polym. Sci. A: Polym. Chem., 33(4), 673 (1995)
- Xu LS, Schlup JR, J. Appl. Polym. Sci., 67(5), 895 (1998)
- Park SJ, Kwak GH, Seo MK, Lee JR, J. Polym. Sci. B: Polym. Phys., 39(3), 326 (2001)
- Bidstrup SU, Macosko CW, J. Polym. Sci. B: Polym. Phys., 28, 691 (1990)
- Cheng KC, Chiu WY, Macromolecules, 26, 4665 (1993)
- Park SJ, Seo MK, Lee JR, J. Appl. Polym. Sci., 79(12), 2299 (2001)
- Barrett KE, J. Appl. Polym. Sci., 11, 1617 (1967)
- Ozawa T, Bull. Chem. Soc. Jpn., 38, 1881 (1965)
- Kissinger HE, Anal. Chem., 29, 1702 (1957)
- Ojeda T, Liberman S, Amorim R, Samios D, J. Polym. Eng., 16, 105 (1997)
- Takahama T, Geil PH, J. Polym. Sci., 20, 453 (1982)
- Lu SX, Cebe P, Capel M, Polymer, 37(14), 2999 (1996)
- Park SJ, Kim HC, J. Polym. Sci. B: Polym. Phys., 39(1), 121 (2001)
- Chen MC, Hourston DJ, Sun WB, Eur. Polym. J., 31, 199 (1995)
- Gopal P, Dharani LR, Blum FD, Polym. Polym. Compos., 5, 327 (1997)