화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.14, No.2, 176-181, April, 2003
DGEBA/PMR-15 블렌드계의 경화거동 및 열안정성에 관한 연구
Studies on Cure Behavior and Thermal Stability of DGEBA/PMR-15 Blend System
E-mail:
초록
본 연구에서는 DGEBA/PMR-15 블렌드계에서 조성비가 경화거동 및 열안정성에 미치는 영향에 대하여 고찰하였다. 경화거동은 Near-IR과 DSC를 이용하였고, 열안정성은 DMA와 TGA를 통하여 고찰하였다. DGEBA에 대한 경화제로는 DDM를 사용하였으며, PMR-15의 조성비는 0, 5, 10, 15, 그리고 20 phr로 하였다. 본 실험 결과, PMR-15의 함량비가 증가함에 따라 전화율이 약간씩 감소하는 경향을 보였으며, 경화 활성화 에너지(Ea)는 함량비에 따라 점차 증가하다가 10 phr에서 최고값을 나타내었다. 그리고 DGEBA/PMR-15 시스템의 TGA 분석 결과 열분해 개시온도(initial decomposition temperature, IDT)와 적분 열분해 진행 온도(integral procedural decomposition temperature, IPDT) 등에 입각한 열안정성은 PMR-15의 함량이 증가할수록 증가하였다. 기계적 특성인 KIC는 Ea와 유사한 경향을 나타내었는데 이는 PMR-15의 조성의 변화가 분자들간의 상호작용으로 인한 가교구조 형성에 영향을 미쳤기 때문인 것으로 사료된다.
In this work, the effect of composition in a diglycidylether of bisphenol A (DGEBA) and polyimide (PMR-15) blend system on the cure behaviors and thermal stabilities were investigated. The cure behaviors were studied in Near-IR and DSC measurements, and thermal stabilities were also carried out by DMA and TGA analyses. DDM (4,4`-diamino diphenyl methane) was used as a curing agent for DGEBA, and the content of PMR-15 in the mixture was 0, 5, 10, 15, and 20 phr. As a result, the conversion (α) was slightly decreased as the content of PMR-15 was increased. The maximum cure activation energy (Ea) occurred at 10 phr of PMR-15. From the TGA results of DGEBA/PMR-15 blend system, the thermal stabilities based on the initial decomposition temperature (IDT) and integral procedural decomposition temperature (IPDT) rose with increasing the PMR-15 composition. The critical stress intensity factor (KIC) showed a similar behavior with Ea, possibly due to the cross-linking developed by the interactions between inter-molecules of the polymer chains.
  1. Delmonte J, Hoggatt JT, May CA, Epoxy Resin, Marcel Dekker, New York (1988)
  2. Mijovic J, Kim J, Slaby J, J. Appl. Polym. Sci., 29, 144 (1984)
  3. Park SJ, Interfacial Forces and Fields: Theory and Applications, ed. J.P. Hsu, chap. 9, Marcel Dekker, New York (1999)
  4. Bauer RS, Epoxy Resin Chemistry, ACS Advances in Chemistry Series No. 114, American Chemical Society, Washington D.C. (1979)
  5. Lee H, Nevile K, Handbook of Epoxy Resins, McGraw-Hill, New York (1967)
  6. Kim YC, Park SJ, Lee JR, Polym. J., 29, 759 (1997) 
  7. Park SJ, Kim TJ, Lee JR, J. Polym. Sci. B: Polym. Phys., 38(16), 2114 (2000) 
  8. Rosato SV, Dimattia DP, Rosato DV, Disigning with Plastics and Composites, Nostrand Reinhold, New York (1991)
  9. Verchere D, Pascault JP, Satereau H, Moschair SM, Riccardi CC, Williams JJ, J. Appl. Polym. Sci., 42, 701 (1991) 
  10. Park SJ, Park WB, Lee JR, Polym. J., 31, 28 (1999) 
  11. Wheeler RL, The Epoxy Resin Formulators Training Manual, The Society of the Plastics Industry Inc., New York (1984)
  12. Odegard G, Kumosa M, Combust. Sci. Technol., 60, 2979 (2000)
  13. Xie W, Pan WP, Chuang KC, Thermochim. Acta, 367, 143 (2001) 
  14. Finzel MC, Delong J, Hawley MC, J. Polym. Sci. A: Polym. Chem., 33(4), 673 (1995) 
  15. Xu LS, Schlup JR, J. Appl. Polym. Sci., 67(5), 895 (1998) 
  16. Park SJ, Kwak GH, Seo MK, Lee JR, J. Polym. Sci. B: Polym. Phys., 39(3), 326 (2001) 
  17. Bidstrup SU, Macosko CW, J. Polym. Sci. B: Polym. Phys., 28, 691 (1990) 
  18. Cheng KC, Chiu WY, Macromolecules, 26, 4665 (1993) 
  19. Park SJ, Seo MK, Lee JR, J. Appl. Polym. Sci., 79(12), 2299 (2001) 
  20. Barrett KE, J. Appl. Polym. Sci., 11, 1617 (1967) 
  21. Ozawa T, Bull. Chem. Soc. Jpn., 38, 1881 (1965) 
  22. Kissinger HE, Anal. Chem., 29, 1702 (1957) 
  23. Ojeda T, Liberman S, Amorim R, Samios D, J. Polym. Eng., 16, 105 (1997)
  24. Takahama T, Geil PH, J. Polym. Sci., 20, 453 (1982)
  25. Lu SX, Cebe P, Capel M, Polymer, 37(14), 2999 (1996) 
  26. Park SJ, Kim HC, J. Polym. Sci. B: Polym. Phys., 39(1), 121 (2001) 
  27. Chen MC, Hourston DJ, Sun WB, Eur. Polym. J., 31, 199 (1995) 
  28. Gopal P, Dharani LR, Blum FD, Polym. Polym. Compos., 5, 327 (1997)