화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.14, No.2, 219-223, April, 2003
셀룰라아제에 의한 지류문화재 보존에 있어서 금속이온 효과
Effect of Metal Ions on the Conservation of Paper Cultural Properties by Cellulase
E-mail:
초록
Avidel PH 101의 가수분해가 20 mM의 Mg++, Cd++, Zn++, Ca++, Hg++, Pb++와 같은 금속이온 존재 하에 Trichoderma viride에서 분리한 endoglucanase I, exoglucanase II와 endo-exo 혼합효소(1 : 1, weight ratio)에 의하여 수행되었다. 가수분해 시 Mg++, Ba++와 Ca++첨가는 상대적인 총환원당 (relative TRS)을 증사시켰으며, Zn++, Hg++과 Pb++의 첨가는 총 환원당을 크게 감소시켰다. Ba++는 최대 활성물질로, Hg++는 최대활성 저해물질로 나타났다. Endo I은 exo II보다 이들 금속이온의 영향을 더 크게 받는 것으로 나타났다. 활성 저해 금속이온인 Zn++, Hg++과 Pb++의 존재 하에 셀룰라아제로 처리한 고서적의 재생펄프와 종이 (intact paper)의 물리적 강도가 측정되었으며, Hg++과 Pb++이 존재 할 경우 물리적 강도의 저하를 초래하지 않았다. 이들 결과로부터 Hg++과 Pb++는 지류문화재 보존에 있어서 셀룰라아제에 의한 손상을 막을 수 있는 효과적인 물질로 나타났다.
The hydrolysis of Avicel PH 101 was performed by endoglucanase I, exoglucanase II and their mixture from Trichoderma viride in the presence of 20 mM metal ions such as Mg++, Cd++, Zn++, Ba++, Ca++, Hg++, Pb++. The addition of Mg++, and Ca++ on hydrolysis of cellulose caused to increase on the total reducing sugar (TRS). On the other hand, significant decrease of TRS on the hydrolysis was observed with Zn++, Hg++ and Pb++. The Ba++ was the most stimulating metal ion, whereas Hg++ was the most inhibiting metal ion. Endo I was more sensitive to these metal ions than exo II. The physical strength of recycling pulp and intact paper of old book treated by cellulase components (endo I, exo II and their mixture) was measured in the presence of inhibitory metal ion(Zn++, Hg++, Pb++). And the physical strength was not decreased in the presence of Hg++, Pb++. From the experimental results, it was found that metal ions such as Hg++, Pb++ were more efficient to prevent damage of paper cultural properties by cellulase.
  1. Reese ET, Shi RGH, Levinson HS, J. Bacteriol., 58, 485 (1950)
  2. Beldman G, Voragen AGJ, Ronbouts FM, Pilnik W, Biotechnol. Bioeng., 31, 173 (1988) 
  3. Nidetzky B, Hayn M, Maacarron R, Steiner W, Biotechnol. Lett., 15, 71 (1993) 
  4. Kanamoto J, Sakamoto R, Arai M, Murao S, J. Ferment. Technol., 57, 163 (1979)
  5. Johnson E, Sakajoh M, Halliwell G, Madia A, Demain AL, Appl. Environ. Microbiol., 43, 1125 (1982)
  6. Kim DW, Jeong YK, Jang YH, Lee JK, J. Ferment. Bioeng., 74, 77 (1994)
  7. Lowry OH, Rosebrough NJ, Farr AE, Randall RJ, Biol. Chem., 193, 265 (1951)
  8. Summer JB, Somers GF, Laboratory Experiments in Biological Chemistry, p. 34, Academic Press, New York (1944)
  9. Au KS, Chan KY, J. Gen. Microbiol., 133, 2155 (1986)
  10. Gardner RM, Doerner KC, White BA, J. Bacteriol., 169, 4581 (1987)
  11. Chanzy H, Henrissatt B, Febs Lett., 184, 285 (1985) 
  12. Teeri T, Reinikainen T, Ruohonen L, Jones TA, Knowles JC, J. Biotech., 24, 169 (1992) 
  13. Chauvaux S, Beguin P, Aubert JP, Bhat KM, Gow LA, Wood TM, Bairoch A, Biochem. J., 265, 261 (1990)
  14. Kim DW, Jang YH, Jeong YK, Biotechnol. Lett., 19(9), 893 (1997) 
  15. Kim DW, Jang YH, Jeong YK, Biotechnol. Appl. Biochem., 27, 97 (1998)
  16. Kim DW, Jang YH, Kim CS, Lee NS, Bull. Korean Chem. Soc., 22, 716 (2001)
  17. 박세연, 이규식, 한성희, 안희균, 보존과학연구, 13, 99 (1992)
  18. Hoffmann P, Jones MA, Archaeological Wood, R.M. Rowell and R.J. Barbour ed., Adv. Chem. Ser. 225, p. 263, Washington, D.C. (1990)