화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.20, No.3, 503-508, May, 2003
Degradation Kinetics of Recalcitrant Organic Compounds in a Decontamination Process with UV/H2O2 and UV/H2O2/TiO2 Processes
E-mail:
In this study, degradation aspects and kinetics of organics in a decontamination process were considered in the degradation experiments of advanced oxidation processes (AOP), i.e., UV, UV/H2O2 and UV/H2O2/TiO2 systems. In the oxalic acid degradation with different H2O2 concentrations, it was found that oxalic acid was degraded with the first order reaction and the highest degradation rate was observed at 0.1 M of hydrogen peroxide. Degradation rate of oxalic acid was much higher than that of citric acid, irrespective of degradation methods, assuming that degradation aspects are related to chemical structures. Of methods, the TiO2 mediated photocatalysis showed the highest rate constant for oxalic acid and citric acid degradation. It was clearly showed that advanced oxidation processes were effective means to degrade recalcitrant organic compounds existing in a decontamination process.
  1. Aceiuno M, Stalikas CD, Lunar L, Rubio S, Perez-Bendito D, Water Res., 36, 3582 (2002) 
  2. Alfano OM, Brandi RJ, Cassano AE, Chem. Eng. J., 82(1-3), 209 (2001) 
  3. Ayres JA, "Decontamination of Nuclear Reactors and Equipment," Ronald Press, New York (1970)
  4. Beltran FJ, Encinar JM, Gonzalez JF, Water Res., 31, 2415 (1997) 
  5. Beltran FJ, Gonzalez M, Gonzalez JF, Water Res., 31, 2405 (1997) 
  6. Beltran FJ, Rivas J, Alvarez PM, Alonso MA, Acedo B, Ind. Eng. Chem. Res., 38(11), 4189 (1999) 
  7. Blake DM, Maness PC, Huang Z, Wolfrum EJ, Huang J, Jacoby WA, Sep. Purif. Methods, 28(1), 1 (1999)
  8. Buxton GV, Greenstock CL, Helman WP, Ross AB, J. Phys. Chem. Ref. Data, 17(2), 513 (1988)
  9. Chai YS, Lee JC, Kim BW, Korean J. Chem. Eng., 17(6), 633 (2000)
  10. Choi W, Kim S, Cho S, Yoo HI, Kim MH, Korean J. Chem. Eng., 18(6), 898 (2001)
  11. Davis AP, Green DL, Environ. Sci. Technol., 33, 609 (1999) 
  12. Getoff N, Schworer F, Markovic VM, Sehested K, Nielsen SO, J. Phys. Chem., 75(6), 749 (1971) 
  13. Hoffmann MR, Martin ST, Choi WY, Bahnemann DW, Chem. Rev., 95(1), 69 (1995) 
  14. Hofl C, Sigl G, Specht O, Wurdack I, Wabner D, Water Sci. Technol., 35(4), 257 (1997) 
  15. Ince NH, Apikyan IG, Water Res., 34(17), 4169 (2000) 
  16. Karpel Vel Leitner N, Dore M, J. Photochem. Photobiol. A-Chem., 99, 137 (1996) 
  17. Karpel Vel Leitner N, Dore M, Water Res., 31, 1383 (1997) 
  18. Kiwi J, Lopez A, Nantochenko V, Environ. Sci. Technol., 34, 2162 (2000) 
  19. Kolthoff IM, Meehan EJ, Kimura M, Talanta, 19, 1179 (1972) 
  20. Kosaka K, Yamada H, Matsui S, Echigo S, Shishida K, Environ. Sci. Technol., 32, 3821 (1998) 
  21. Kosaka K, Yamada H, Matsui S, Echigo S, Shishida K, Echigo S, Miner RA, Tsuno T, Matsui S, Water Res., 15, 3587 (2001) 
  22. Linsebigler AL, Lu GQ, Yates JT, Chem. Rev., 95(3), 735 (1995) 
  23. Mazzarino I, Piccinini P, Chem. Eng. Sci., 54(15-16), 3107 (1999) 
  24. Ocken H, "Decontamination Handbook," EPRI Report TR-112352, EPRI (1999)
  25. Ono R, Oda T, J. Electrostat., 55, 333 (2002) 
  26. Park DR, Ahn BJ, Park HS, Yamashita H, Anpo M, Korean J. Chem. Eng., 18(6), 930 (2001)
  27. Yang JK, Davis AP, Environ. Sci. Technol., 35, 3566 (2001) 
  28. Yang JK, Davis AP, Environ. Sci. Technol., 34, 3789 (2000) 
  29. You YS, Chung KH, Kim JH, Seo G, Korean J. Chem. Eng., 18(6), 924 (2001)
  30. Wu Z, Cong Y, Zhou M, Ye Q, Tan T, Korean J. Chem. Eng., 19(5), 866 (2002)
  31. Zuo Y, Deng Y, Chemosphere, 35(9), 2051 (1997)