Journal of the Korean Industrial and Engineering Chemistry, Vol.14, No.3, 291-297, May, 2003
나노구조형 Carbon/TiO2 광촉매의 제조 및 특성
Preparation and Characterization of Nanostructured Carbon/TiO2 Photocatalysts
E-mail:
초록
본 연구에서는 나노구조형 cellulose/TiO2를 탄화시켜 나노구조형 carbon/TiO2 광촉매를 제조하였으며, 이 때 담지체인 carbon과 촉매인 TiO2의 미세구조가 carbon/TiO2 광촉매의 광활성에 미치는 영향에 대하여 고찰하였다. Carbon/TiO2의 제조 과정에 따른 화학적 조성의 변화는 EDS를 통해 알아보았으며, 표면 관능기는 FT-IR을 통하여 분석하였다. 또한 시료의 미세구조와 비표면적은 XRD와 BET를 통해서 각각 알아보았으며, 제조한 광촉매의 광활성은 UV하에서 전분 분해실험을 통해 알아보았다. 실험 결과, 탄화과정 후에도 TiO2상은 anatase형을 취하고 있으며, 제조된 carbon/TiO2 광촉매는 순수한 TiO2보다 다소 높은 광활성을 나타내는 것을 알 수 있었다. 이는 탄화과정이 진행됨에 따라 초기 담지체인 cellulose의 질량손실에서 기인된 carbon 표면의 TiO2양의 상대적인 증가와, TiO2의 결정 크기의 증가로 인한 결정의 광흡수가 증가 때문인 것으로 사료되며, carbon/TiO2가 담지체의 특성 때문에 순수한 TiO2보다 상대적으로 큰 비표면적을 가지기 때문인 것으로 사료되어진다.
In this work, nanostructured carbon/TiO2 photocatalysts were made by the carbonization of cellulose/TiO2, which was prepared by anchoring the TiO2 on the surfaces of cellulose particles in order to improve the photoactivity of pure TiO2. The surface properties of the photocatalysts were studied in the context of FT-IR and XRD measurements. The specific surface areas and elemental compositions of the photocatalysts were studed in volumetric N2/77 measurement and EDS, respectively. The photoactivites of the photocataysts were evaluated using a photo-decomposition method under UV light. The experimental results showed that the TiO2 crystal phases of the carbon/TiO2 had an anatase-form revealed by WAXRD. The carbon/TiO2 was observed to have a better photoactivity than that of pure TiO2. This result was probably due to the relatively increased specific surface areas of the carbon/TiO2, compared to pure TiO2 and to the growth of TiO2 crystals that caused increased light absorption of TiO2 in carbon/TiO2
- Ollis DF, Pelizzetti E, Serpone N, Photocatalysis Fundamentals and Applications, ed. N. Serpone and E. Pelizzetti, Wiley, New York (1989)
-
Li FB, Li XZ, Appl. Catal. A: Gen., 228(1-2), 15 (2002)
- Datye AK, Riegel G, Bolton JR, Huang M, Prairie MR, J. Solid State Chem., 115, 236 (1995)
-
Matos J, Laine J, Herrmann JM, J. Catal., 200(1), 10 (2001)
-
Park BJ, Park SJ, Ryu SK, J. Colloid Interface Sci., 217(1), 142 (1999)
-
Takeda N, Iwata N, Torimoto T, Yoneyama H, J. Catal., 177(2), 240 (1998)
-
Yoshikawa M, Yasutake A, Mochida I, Appl. Catal. A: Gen., 173(2), 239 (1998)
-
Park SJ, Kim KD, J. Colloid Interface Sci., 212(1), 186 (1999)
-
Ding Z, Hu XJ, Yue PL, Lu GQ, Greenfield PF, Catal. Today, 68(1-3), 173 (2001)
- Negishi N, Takewchi K, Mater. Lett., 38, 150 (1999)
- Ahuja S, Kutty TRN, J. Photochem. Photobiol. A-Chem., 97, 99 (1996)
-
Nagaoka S, Hamasaki Y, Ishihara S, Nafata M, Iio K, Nagasawa C, Ihara H, J. Mol. Catal. A-Chem., 177, 255 (2002)
-
Beydiun D, Tse H, Amal R, Low G, McEvoy S, J. Mol. Catal. A-Chem., 177, 265 (2002)
-
Ding Z, Lu CQ, Greenfield PE, J. Colloid Interface Sci., 232(1), 1 (2000)
- Torimoto T, Ito S, Juwabata S, Yoneyama H, Environ. Sci. Technol., 30, 1275 (1996)
- Torimoto T, Okawa Y, Takeda N, Yoneyama H, J. Photochem. Photobiol. A-Chem., 103, 153 (1997)
- Attiya YA, Kitchener JA, Development of Complexing Polymers for Selective Flocculation of Copper Minerals, Proc. 11th Int. Mineral Processing Congress, 1233 (1975)
- Wing RE, Doane WM, Russel CR, J. Appl. Polym. Sci., 19, 847 (1975)
- Brunauer S, Emmett PH, Teller E, J. Am. Chem. Soc., 60, 309 (1938)
- Lippens BC, deBoer JH, J. Catal., 4, 319 (1965)
- Djaoued Y, Taj R, Bruning R, Badilescu S, Ashrit P, Bader G, J. Non-Cryst. Solids, 297, 55 (2002)
- Kinoshita K, Carbon-electrochemical and Physicochemical Properties, ed. B. Warren, John Wiley, New York (1988)
- Park SJ, Kim JS, Carbon, 39, 2011 (2001)
- Cullity B, Elements of X-ray Diffraction, Addison-Wesley, Amsterdam (1988)
- Buerger M, Crystal Structure Analysis, John Wiley, New York (1960)
-
Park SJ, Donnet JB, J. Colloid Interface Sci., 200(1), 46 (1998)
-
Park SJ, Jung WY, J. Colloid Interface Sci., 243(2), 316 (2001)