Journal of the Korean Industrial and Engineering Chemistry, Vol.14, No.4, 451-457, June, 2003
Dimethacrylate계 희석제를 사용한 가시광선 중합형의 고분자계 치과용 레진의 물성에 관한 연구
A Study on the Properties of Visible Light-Activated Polymeric Dental Resin with Various Dimethacrylate Diluents
E-mail:
초록
여러 종류의 dimethacrylate를 희석제로 사용하여 가시광선 광중합형의 고분자계 치과용 레진(polymeric dental resin, PDR)을 제조하고 이들의 물성을 분석하였다. Resin matrix로는 bisphenol A glycerolate dimethacrylate와 ethylene glycol을 spacer로 하는 다양한 분자쇄의 dimethacrylate계 희석제를 70:30 (wt%)으로 혼합시켜 사용하였으며, filler는 평균 입경이 1 μm인 barium silicate를 사용하였다. 유기질의 resin matrix와 무기질 filler와의 혼화성을 증가시키기 위해 filler 표면을 γ-methacryloxypropyltrimethoxysilane을 사용하여 소수성으로 개질시켰다. 광중합에 필요한 광개시제와 광환원제로는 camphorquinone과 ethyl-4-dimethylaminobenzoate를 각각 사용하였다. 제조된 PDR에 대하여 적외선분광분석기를 사용하여 중합전환률을 측정하였으며, 간접인장강도, 중합수축률 및 중합깊이, 마모저항도를 정해진 규격에 따라 측정하여 PDR의 치과적 물성을 고찰하였다.
The preparation of visible-light activated polymeric dental resin (PDR) was carried out using various dimethacrylate diluents. Resin metrix was composed of 70:30 wt% of bisphenol A glycerolate dimethacrylate diluents, respectively, having a variety of chain length of ethylene glycol spacer group. Barium silicate with an average diameter of 1 μm was used as the filler. To improve miscibility between the inorganic filler and the organic resin matrix, the filler surface was hydrophobically treated with γ-methacryloxypropyltrimethoxysilane. Camphorquinone and ethyl-4-dimethylaminobenzoate were adapted as the photoinitiator and the photoaccelerator, respectively. Degree of conversion of PDR was investigated using FT-IR spectroscopy. In addition, diametral tensile strength, polymerization shrinkage, and abrasion resistance were measured using the recommended dental specifications.
- Willems G, Lambrechts P, Braem M, Vanherle G, Quintessence Int., 24, 641 (1993)
- Moszner N, Salz U, Prog. Polym. Sci., 26, 535 (2001)
- Anusavice KJ, Phillip's Science of Dental Materials, Saunders, London (1996)
- Ferracane JL, Mitchem JC, Condon JR, Todd R, J. Dent. Res., 76, 1508 (1997)
- Cook WD, Johannson M, J. Biomed. Mater. Res., 21, 979 (1987)
- Davy KWM, Kalachandra S, Pandain MS, Braden M, Biomaterials, 19, 2007 (1998)
- Peutzfeldt A, Eur. J. Oral Sci., 105, 97 (1997)
- Kim O, Lee T, J. Ind. Eng. Chem., 7(2), 78 (2001)
- Park YJ, Chae KH, Rawls HR, Dent. Mater., 15, 120 (1999)
- Kim O, Lee T, J. Korean Ind. Eng. Chem., 12(1), 65 (2001)
- Kim O, Shim WJ, Polym. Compos., 22, 650 (2001)
- Kim O, Lee T, Gong MS, J. Korean Ind. Eng. Chem., 13(3), 268 (2002)
- Ferracane JL, Greener EH, J. Biomed. Mater. Res., 20, 121 (1986)
- Dentistry-Resin Based Filling Materials, ISO Specification No. 4049 (1978)
- Counsil on Dental Materials and Devices, New American Dental Association Specification No. 27 for Direct Filling Resins, J. Am. Dent. Assoc., 94, 1191 (1977)
- Imazato S, Tarumi H, Kobayashi K, Hiraguri H, Ada K, Tsuchitani Y, Dent. Mater. J., 14, 23 (1995)
- Williams DF, Materials Science and Technology, Vol. 14, VCH, Cambridge, U.K., 209 (1992)
- Chun J, Optimum Design of Polymeric Dental REstorative Material with Enhanced Volumetric Dimensional Stability, Master of Eng. Dissertation, Dankook Univ., Seoul, Korea (2002)
- Goldman M, Aust. Dent. J., 28, 156 (1983)
- Davidson CL, Posterior Composite Resin Dental REstorative Material, Ed. G. Vanherle, The Netherlands Peter Szule Pub. Co., 61 (1985)
- Cowperthwatte GF, Foy JJ, Malloy MA, Biomedical and Dental Applications of Polymers, eds. C.G. Gebelein and F.F. Koblitz, Plenum Press, New York, 379 (1981)
- Lee KH, Huh SY, Operative Dentistry, 4th ed., Chap. 7, Komoonsa, Seoul, Korea (2000)
- Kim SW, Performance Improvement and Optimization of Bis-GMA/Inorganic Filler Composites using Silane Modification and Statistical Experimental Design, Ph.D. Dissertation, Seoul National Univ., Seoul, Korea (1999)