화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.14, No.4, 451-457, June, 2003
Dimethacrylate계 희석제를 사용한 가시광선 중합형의 고분자계 치과용 레진의 물성에 관한 연구
A Study on the Properties of Visible Light-Activated Polymeric Dental Resin with Various Dimethacrylate Diluents
E-mail:
초록
여러 종류의 dimethacrylate를 희석제로 사용하여 가시광선 광중합형의 고분자계 치과용 레진(polymeric dental resin, PDR)을 제조하고 이들의 물성을 분석하였다. Resin matrix로는 bisphenol A glycerolate dimethacrylate와 ethylene glycol을 spacer로 하는 다양한 분자쇄의 dimethacrylate계 희석제를 70:30 (wt%)으로 혼합시켜 사용하였으며, filler는 평균 입경이 1 μm인 barium silicate를 사용하였다. 유기질의 resin matrix와 무기질 filler와의 혼화성을 증가시키기 위해 filler 표면을 γ-methacryloxypropyltrimethoxysilane을 사용하여 소수성으로 개질시켰다. 광중합에 필요한 광개시제와 광환원제로는 camphorquinone과 ethyl-4-dimethylaminobenzoate를 각각 사용하였다. 제조된 PDR에 대하여 적외선분광분석기를 사용하여 중합전환률을 측정하였으며, 간접인장강도, 중합수축률 및 중합깊이, 마모저항도를 정해진 규격에 따라 측정하여 PDR의 치과적 물성을 고찰하였다.
The preparation of visible-light activated polymeric dental resin (PDR) was carried out using various dimethacrylate diluents. Resin metrix was composed of 70:30 wt% of bisphenol A glycerolate dimethacrylate diluents, respectively, having a variety of chain length of ethylene glycol spacer group. Barium silicate with an average diameter of 1 μm was used as the filler. To improve miscibility between the inorganic filler and the organic resin matrix, the filler surface was hydrophobically treated with γ-methacryloxypropyltrimethoxysilane. Camphorquinone and ethyl-4-dimethylaminobenzoate were adapted as the photoinitiator and the photoaccelerator, respectively. Degree of conversion of PDR was investigated using FT-IR spectroscopy. In addition, diametral tensile strength, polymerization shrinkage, and abrasion resistance were measured using the recommended dental specifications.
  1. Willems G, Lambrechts P, Braem M, Vanherle G, Quintessence Int., 24, 641 (1993)
  2. Moszner N, Salz U, Prog. Polym. Sci., 26, 535 (2001) 
  3. Anusavice KJ, Phillip's Science of Dental Materials, Saunders, London (1996)
  4. Ferracane JL, Mitchem JC, Condon JR, Todd R, J. Dent. Res., 76, 1508 (1997)
  5. Cook WD, Johannson M, J. Biomed. Mater. Res., 21, 979 (1987) 
  6. Davy KWM, Kalachandra S, Pandain MS, Braden M, Biomaterials, 19, 2007 (1998) 
  7. Peutzfeldt A, Eur. J. Oral Sci., 105, 97 (1997)
  8. Kim O, Lee T, J. Ind. Eng. Chem., 7(2), 78 (2001)
  9. Park YJ, Chae KH, Rawls HR, Dent. Mater., 15, 120 (1999) 
  10. Kim O, Lee T, J. Korean Ind. Eng. Chem., 12(1), 65 (2001)
  11. Kim O, Shim WJ, Polym. Compos., 22, 650 (2001) 
  12. Kim O, Lee T, Gong MS, J. Korean Ind. Eng. Chem., 13(3), 268 (2002)
  13. Ferracane JL, Greener EH, J. Biomed. Mater. Res., 20, 121 (1986) 
  14. Dentistry-Resin Based Filling Materials, ISO Specification No. 4049 (1978)
  15. Counsil on Dental Materials and Devices, New American Dental Association Specification No. 27 for Direct Filling Resins, J. Am. Dent. Assoc., 94, 1191 (1977)
  16. Imazato S, Tarumi H, Kobayashi K, Hiraguri H, Ada K, Tsuchitani Y, Dent. Mater. J., 14, 23 (1995)
  17. Williams DF, Materials Science and Technology, Vol. 14, VCH, Cambridge, U.K., 209 (1992)
  18. Chun J, Optimum Design of Polymeric Dental REstorative Material with Enhanced Volumetric Dimensional Stability, Master of Eng. Dissertation, Dankook Univ., Seoul, Korea (2002)
  19. Goldman M, Aust. Dent. J., 28, 156 (1983)
  20. Davidson CL, Posterior Composite Resin Dental REstorative Material, Ed. G. Vanherle, The Netherlands Peter Szule Pub. Co., 61 (1985)
  21. Cowperthwatte GF, Foy JJ, Malloy MA, Biomedical and Dental Applications of Polymers, eds. C.G. Gebelein and F.F. Koblitz, Plenum Press, New York, 379 (1981)
  22. Lee KH, Huh SY, Operative Dentistry, 4th ed., Chap. 7, Komoonsa, Seoul, Korea (2000)
  23. Kim SW, Performance Improvement and Optimization of Bis-GMA/Inorganic Filler Composites using Silane Modification and Statistical Experimental Design, Ph.D. Dissertation, Seoul National Univ., Seoul, Korea (1999)