화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.14, No.4, 511-518, June, 2003
건식 석탄가스화기에서 생성된 미량가스와 비산재의 특성
Characteristics of Trace Gas and Solid Fines Produced from the Dry-Feeding Coal Gasifier
E-mail:
초록
건식 석탄 가스화기로부터 발생하는 미량가스인 H2S, COS, NH3, HCN, 메탄 가스의 생성농도와 가스화기에서 배출되는 미립 비산재를 분석하여 가스화기 후단공정의 기본설계에 필요한 자료를 제시하였다. 가스화에 적합한 국내 수입탄 중 하나인 인도네시아 아다로탄을 가스화하고 물세정탑을 거친 결과, H2S는 320 ~ 450 ppm, COS 30 ~ 40 ppm, NH3 60 ~ 120 ppm, HCN 50 ~ 110 ppm, 메탄가스는 700 ~ 2800 ppm 범위로 발생하였다. 가스화기 온도변화에 따른 미량가스들의 민감도를 측정한 결과 H2S와 COS, NH3는 온도변화에 큰 변화가 없었으나 메탄농도는 가스화기 온도에 매우 민감하였다. 따라서, 메탄농도를 가스화기 내부온도를 간접 측정하는 변수로 활용이 가능하며, 3가지 다른 분석기기를 사용하여 메탄농도의 온도에 대란 반응성을 비교한 결과 모두 동일한 경향과 수치를 나타내었다. 가스화기 후단으로 비말동반되는 비산재의 양은 투입시료량의 1.2%였으며 탄소함량은 71~77%에 달하였고 탄소전환율 0.87%의 손실에 해당하였다. 비산재의 형태는 여러 작은 입자들이 일부 용융되어 엉겨있는 모양으로서, 가스화설비의 후단 집진설비 설계시 수 μm 이하의 입자가 많이 발생될 수 있는 점에 대비가 필요함을 보여주고 있다.
Through the measurement of trace gas concentrations and fines that were produced from the dry-feeding coal gasifier, basic design parameters for a future gasification process were provided. As for the gasification, Indonesian Adaro coal was chosen and yielded the following trace gas compositions after water scrubber: 320 ~ 450 ppm of H2S, 30 ~ 40 ppm of COS, 60 ~ 120 ppm of NH3, 50 ~ 110 ppm of HCN, and 700 ~ 2800 ppm of methane. Effect of gasifier temperature on the concentration changes of trace gases, H2S, COS, and NH3, were insignificant, whereas methane concentration exhibited sensitive behavior upon the temperature variation. Therefore, methane concentration can be used as an indirect parameter to estimate the gasifier temperature. When three different analytical tools were employed to determine the methane concentration as a function of the temperature variation, all three tools demonstrated similar trends and values. Amount of entrained fines from the gasifier was 1.2% of the feeding coal. Carbon contents in fines were analyzed as 71~77%, which attributed 0.87% to carbon conversion losses. Fines showed the shape of intertwined aggregates with several smaller particles that were partly melted; and thereby, in the basic design of a particulate removal facility after the gasification system required a method to remove particles, less than a few μm size, that maybe produced.
  1. Berkowitz N, An Introduction to Coal Technology, Academic Press, New York (1979)
  2. Wen CY, Lee ES, Coal Conversion Technology, Addison-Wesley Pub. Co., London (1979)
  3. Kim SD, Lee JM, Prospect. Ind. Chem., 5(1), 35 (2002)
  4. 윤용승, 정석우, 김원배, 에너지공학, 10, 90 (2001)
  5. Moritsuka H, A Study of Thermal Efficiency and Load Control of an Air Blow IGCC Power Generation System, Yokosuka Research Laboratory Rep. No. W09 (1992)
  6. Ploeg JEG, Gasification Performance of the Demkolec IGCC, Proceedings of Gasifiction 4 the Future, 4th European Gasification Conference, Noordwijk, Netherlands (2000)
  7. Schellberg W, Pena FG, Project Status of the Puertollano IGCC Plant, Proceedings of Gasifiction 4 the Future, 4th European Gasification Conference, Noordwijk, Netherlands (2000)
  8. 윤용승, 이승종, 김형택, 석탄복합발전시스템의 가스화기, 대한민국 특허 113642호 (1997)
  9. 이진욱, 나혜령, 이한구, 윤용승, 선회유동식 석탄가스화기, 대한민국 특허 200236 (1999)
  10. Ashizawa M, Hara S, Ichikawa K, Mimaki T, Inumaru J, Hamamatsu T, Development of High-performance Coal Gasification Technology for High Ash Fusion Temperature Coals, Yokosuka Research Laboratory Rep. No. W91034 (1992)
  11. Kohl AL, Riesenfeld FC, Gas Purification, 4th Ed., Gulf Publishing Co., Houston U.S.A. (1985)
  12. Kovacik G, Oguztoreli M, Chambers A, Ozum B, Int. J. Hydrog. Energy, 15, 125 (1990) 
  13. Kurkela E, Stahlberg P, Laatikainen-Luntama J, Pressurized Fluidized-Bed Gasification Experiments with Wood, Peat and Coal at VTT in 1991-1994: Part II Experiences from Peat and Coal Gasification and Hot Gas Filtration, NTIS Report PB96-159512 (1995)
  14. Skinner FD, Mixing and Gasification of Pulverized Coal, Ph.D. Thesis, Brigham Young University (1980)
  15. Matsuda H, Nakayama T, Tanaka T, Formation Characteristics of Hydrogen Cyanide (HCN) in a Coal Gasification, Yokosuka Research Laboratory Rep. No. W92046 (1993)
  16. Woods DR, Process Design and Engineering Practice, PTR Prentice Hall, New Jersey (1995)
  17. Yun Y, Yoo YD, Korean J. Chem. Eng., 18(5), 679 (2001)