Journal of the American Chemical Society, Vol.125, No.14, 4338-4341, 2003
Oscillatory growth of silica tubes in chemical gardens
We report distinct growth regimes of hollow silica fibers formed by hydrodynamic injection of cupric sulfate into silicate solution. The tubes grow either steadily along a continuous jet of buoyant solution or through relaxation oscillations that are governed by chemo-mechanical processes. The dependence of the oscillation period on flow rate and copper concentration is explained in the framework of a simple model. Tailored flow patterns allow the directional control of the tubes and their use as miniature connectors. Our findings are applicable to the understanding of chemical gardens, promise a wealth of nonlinear phenomena, and offer possible applications in microfluidics.