Journal of the American Chemical Society, Vol.125, No.16, 4928-4936, 2003
Competition and selectivity in the reaction of nitriles on Ge(100)-2x1
We have experimentally investigated bonding of the nitrile functional group (R-Cequivalent toN:) on the Ge(100)-2x1 surface with multiple internal reflection infrared spectroscopy. Density functional theory calculations are used to help explain trends in the data. Several probe molecules, including acetonitrile, 2-propenenitrile, 3-butenenitrile, and 4-pentenenitrile, were studied to elucidate the factors controlling selectivity and competition on this surface. It is found that acetonitrile does not react on the Ge(100)-2x1 surface at room temperature, a result that can be understood with thermodynamic and kinetic arguments. A [4+2] cycloaddition product through the conjugated pi system and a [2+2] C=C cycloaddition product through the alkene are found to be the dominant surface adducts for the multifunctional molecule 2-propenenitrile. These two surface products are evidenced, respectively, by an extremely intense v(C=C=N), or ketenimine stretch, at 1954 cm(-1) and the v(Cequivalent toN) stretch near 2210 cm(-1). While the nonconjugated molecules 3-butenenitrile and 4-pentenenitrile are not expected to form a [4+2] cycloaddition product, both show vibrational modes near 1954 cm(-1). Additional investigation suggests that 3-butenenitrile can isomerize to 2-butenenitrile, a conjugated nitrile, before introduction into the vacuum chamber, explaining the presence of the vibrational modes near 1954 cm(-1). Pathways directly involving only the nitrile functional group are thermodynamically unfavorable at room temperature on Ge(100)-2x1, demonstrating that this functional group may prove useful as a vacuum-compatible protecting group.