화학공학소재연구정보센터
Journal of the Electrochemical Society, Vol.150, No.5, E255-E265, 2003
Electrochemical behavior of chloramines on the rotating platinum and gold electrodes
Electroreduction of chloramines (mono-, di-, and trichloramine) in 1 M NH4Cl solutions of different pH was investigated at the rotating platinum and gold electrodes. It was found that all chloramines are present in the solution in nonprotonated forms and give well-formed one-step or two-step current-potential waves. The final products of reduction are ammonium (or ammonia) and chloride ions. Monochloramine is reduced in a single two-electron irreversible wave. Hydrazine is not an intermediate in monochloramine reduction. Dichloramine reduction generally proceeds in two two-electron steps (via monochloramine). Below pH 4.3 a kinetic current due to the protonated dichloramine reduction (single four-electron wave) is in force, appearing as an increase of the height of the first step on lowering pH. Due to this process below pH 2.5 only one four-electron reduction wave is observed. Trichloramine reduction occurs in two steps: two-electron trichloramine to dichloramine reduction and four-electron dichloramine reduction. In strong acidic solutions the kinetic current due to the protonated trichloramine reduction has to be taken into account. A reaction mechanism common for all chloramines was proposed with [NXCl.] as an intermediate (X=H-2, HCl, and Cl-2 for mono-, di-, and trichloramine, respectively). The rate-determining step does not involve proton transfer. (C) 2003 The Electrochemical Society.