HWAHAK KONGHAK, Vol.35, No.6, 838-845, December, 1997
알칼리 연료전지용 라니니켈 수소극에서 촉매층 두께 효과의 수학적 모델링
A Mathematical Modeling of the Effects of Catalyst Layer Thickness in Raney Nickel Electrodes for Alkaline Fuel Cells
초록
알칼리 연료전지용 라니니켈 수소극의 수학적 모델링을 통해 촉매층내에서 실험적으로 측정이 불가능한 전해질 농도, 국부 과전압 및 국부 전류밀도의 분포를 조사하였다. 또, 촉매층 두께가 달라질 때 미세 기공도 및 교환전류밀도가 전극 성능에 미치는 영향에 대해서도 연구하였다. 연구 결과, 전해질 면과 가스층 면에서의 전해질의 농도 및 국부 과전압, 국부 전류밀도의 차이는 촉매층의 두께가 두꺼울수록, 과전압이 클수록 커졌다. 그리고 전해질 면에 가까울수록 촉매층내에서 반응속도는 증가하였으며, 촉매층의 두께가 두꺼울 때 전류는 주로 전해질 면에 가까운 영역에서 생성되었다. 촉매층 두께가 약 0.1㎜ 이하일 때 촉매층의 미세 기공도는 전극 성능에 거의 영향을 미치지 않았으나, 촉매층 두께가 두꺼울수록 전극 성능을 더욱 증가시켰다. 교환전류밀도의 증가는 활성 두께를 감소시켰으나, 촉매층 두께에 상관없이 전극 성능을 증가시켰다.
Through a mathematical modeling of Raney nickel hydrogen electrodes for AFCs, the distributions of electrolyte concentration, local overpotential and local current density in the catalyst layer, which are not experimentally measurable, were investigated. Also, we have studied the effects of microporosity and exchange current density on the electrode performance at the various thickness of catalyst layer. The results showed that the difference of the electrolyte concentration, the local overpotential and the local current density between electrolyte side and gas diffusion layer side increased with increase in catalyst layer thickness and overpotential. The closer to the electrolyte side, the more rapid the reaction rate in the catalyst layer was. When the thickness of the catalyst layer was less than about 0.1mm, the microporosity of the catalyst layer had little effects on the electrode performance. However, as the thickness increased, it increased electrode performance. An increase on exchange current density reduced the active thickness, but, increased the electrode performance regardless of the catalyst layer thickness.
Keywords:Mathematical Modeling;Raney Nickel Hydrogen Electrode;Alkaline Fuel Cell;Porous Gas Diffusion Electrode
- Kinoshita K, "Electrochemical Oxygen Technology," John Wiley & Sons, Int., New York (1992)
- Srinivasan S, Hurwitz HD, Bockris JOM, J. Chem. Phys., 46, 3108 (1967)
- Srinivasan S, Hurwitz HD, Electrochim. Acta, 12, 495 (1967)
- Giner J, Hunter C, J. Electrochem. Soc., 116, 1124 (1969)
- Kenjo T, Electrochim. Acta, 33, 41 (1988)
- Mund K, Ritcher G, Strum F, J. Electrochem. Soc., 124, 1 (1977)
- Kenjo T, Bull. Chem. Soc. Jpn., 54, 2553 (1981)
- Kenjo T, J. Electrochem. Soc., 132, 1583 (1985)
- Gutlip MB, Electrochim. Acta, 20, 767 (1975)
- Bjornbom P, Electrochim. Acta, 32, 115 (1987)
- Kimble MC, White RE, J. Electrochem. Soc., 138, 3370 (1991)
- Vetter KJ, "Electrochemical Kinetics," Academic Press, N.Y. (1967)
- Newman JS, "Electrochemical Systems," Prentice-Hall, Inc., Englewood Cliffs, N.J. (1988)
- Jo JH, Kim HJ, Moon SK, HWAHAK KONGHAK, 34(5), 629 (1996)
- Kenjo T, J. Electrochem. Soc., 133, 2051 (1986)