화학공학소재연구정보센터
Powder Technology, Vol.130, No.1-3, 138-146, 2003
Microdynamic analysis of particle flow in a horizontal rotating drum
The flow of particles in a horizontal rotating drum is studied based on the results generated by Distinct Element Method (DEM). The simulation conditions are comparable to those measured by means of Positron Emission Particle Tracking (PEPT), with a drum being 100 min in diameter, 35% filled by spheres of 3 mm diameter, and rotating at a speed from 10 to 65 rpm. The simulation method is validated from its good agreement with the PEPT measurement in terms of the dynamic angle of repose and spatial velocity fields. The dependence of flow behaviour on rotation speed is then analysed based on the DEM results, aiming to establish the spatial and statistical distributions of microdynamic variables related to flow structure such as porosity and coordination number, and force structure such as particle interaction forces, relative collision velocity and collision frequency. An attempt has also been made to explain the effect of rotation speed on agglomeration based on the present findings.