Automatica, Vol.39, No.4, 595-605, 2003
Stability and operating constraints of adaptive LMS-based feedback control
The filtered-X LMS algorithm has enjoyed widespread usage in both adaptive feedforward and feedback controller architectures. For feedforward controller designs the filtered-X LMS algorithm has been shown to exhibit unstable divergence for plant estimation errors in excess of 90degrees. Typical implementations of this algorithm in adaptive feedback controllers such as filtered-U and filtered-E have previously been assumed to conform to these same identification constraints. Here we present two instability mechanisms that can arise in filtered-E control that violate the 90degrees error assumption: feedback loop instabilities and LMS algorithm divergence. Analysis of the adaptive feedback system indicates that the conventionally interpreted plant estimation error can be arbitrarily small yet induce algorithm divergence; while other cases may have very large estimation errors and feedback loops cause controller instability. These analytical observations are supported by simulations. The implications of the actual plant estimation error, calculated here for the filtered-E controller, are extended to practical constraints placed on applications including filtered-U, on-line system identification, and self-excited system control. (C) 2003 Elsevier Science Ltd. All rights reserved.
Keywords:adaptive control;filter stability;feedback control;LMS algorithm;active noise control;adaptive digital filters