화학공학소재연구정보센터
Automatica, Vol.39, No.5, 767-777, 2003
Predictive neuro-control of uncertain systems: design and use of a neuro-optimizer
We consider the problem of predictive control of uncertain stochastic discrete I/O systems. Given a model identification procedure able to give accurate output system estimates, e.g. a neural network approximation, we use another feedforward neural network to generate at each time step a constrained optimal control. Dynamic backpropagation is used to improve when necessary the controller network parameters. Both system and controller neural structures are first selected off-line by a statistical Bayesian procedure in order to make the predictive control minimizing process more efficient. The issue of stochastic stability of the closed-loop is considered. We developed this approach for the tracking control of such uncertain systems as biotechnological processes. Actual and simulated predictive neuro-control case studies in this field of application are proposed as illustrations. A comparison with a more classic quasi-Newton-based approach is also proposed, showing the interest of this neuro-control approach. (C) 2003 Elsevier Science Ltd. All rights reserved.