화학공학소재연구정보센터
Computers & Chemical Engineering, Vol.27, No.4, 449-467, 2003
Optimization of preventive maintenance strategies in a multipurpose batch plant: application to semiconductor manufacturing
This paper addresses the problem of preventive maintenance (PM) strategy optimization in a semiconductor manufacturing environment, with the objective of minimizing maintenance costs. The approach developed takes into account the interaction of production and maintenance aspects. For this purpose, a discrete-event production-oriented simulator (MELISSA-C++) has been extended to incorporate equipment failures and maintenance operations, thus modeling residual breakdowns, occurring in a combined corrective/PM context. The usefulness of the simulation tool has also been demonstrated for the estimation of both direct and indirect maintenance costs, which are impossible to determine empirically due to the reentrant nature of product flows in a semiconductor manufacturing facility. The results obtained have confirmed the marked effect of equipment characteristics (bottleneck or non-limiting step) on maintenance cost evaluation. Following a tutorial example, typical results are presented and analyzed.