화학공학소재연구정보센터
HWAHAK KONGHAK, Vol.36, No.2, 125-131, April, 1998
콜타르 핏치로부터 전환된 메조페이스의 함량에 따른 특성
On Characteristics with Contents of Mesophase Transformed from Coal Tar Pitch
초록
콜타르 핏치를 온도와 질소주입속도를 공정변수로 하여 시간별로 열처리할 때, 메조페이스로 전환되는 과정을 관찰하여 이들 변수에 따라 나타나는 탄화특성, 메조페이스 함량 증가 과정과 함량에 따른 단계별 특성을 조사하였다. 처리온도와 질소주입속도에 따라 메조페이스로 전환되는 양상은 큰 차이를 보였다. 처리온도는 높을수록 쉽게 메조페이스로 전환되지만 용매에 대한 용해도가 떨어지고 용융온도도 높다. 질소주입속도에 따라서는 일정한 범위(120 cm/sec)까지는 주입속도에 따라 메조페이스 형성에 도움을 주지만 그 이상에선 별 영향이 없었다. 처리온도와 질소주입속도에 따라 메조페이스함량이 QI함량과 일치하지 않았다. 메조페이스 함량에 따른 β-resin(BI-QS)성분의 양은 열처리 온도에 따라서는 메조페이스 함량이 약 15-40vo1%를 경계로 증가하다 감소하였고 처리온도가 낮을수록 높은 값을 나타내며, 질소 주입 속도에 따라서는 20vo1%를 경계로 증가하다 일정한 값을 가지며 주입속도가 낮을수록 높은 값을 나타냈다. 메조페이스 함량에 따른 원소비(C/H)는 질소 주입속도보다는 처리온도에 의존하였으며, 메조페이스 핏치는 비뉴톤성 유체 거동을 보였으며 메조페이스 함량에 따른 유동도에 따라 점도분포를 나타내었다. 따라서, 메조페이스로 전환시 온도는 낮을수록 질소주입속도는 일정범위를 갖는 것이 우수한 성질의 메조페이스 제조에 필요하다.
When mesophase pitches were prepared from coal tar pitch by heat treatment with temperatures and superficial velocity of N2 gas respectively, carbonization characteristics, transforming course and step process characteristics according to mesophase contents were investigated. Types of transforming mesophase were very different on heating temperature and superficial velocity of N2 gas. At higher temperature, forming rate of mesophase was high, but solubility by solvent and melting temperature decreased and became high, respectively. The mesophase contents increased by superficial velocity of N2 gas(below 120 cm/sec), but after that, even though superficial velocity of N2 gas increased, there was no effects on transforming mesophase. The mesophase contents in pitches heat-treated did not agree with QI contents. On the other hand, the amount of β-resin was the highest at 15-40 vol% of mesophase contents and became higher as treating temperatures decreased, considering on blowing rate of N2 gas, that was the highest at 20 vol%, after that. became constant and higher as blowing rate decreased. It is found that atomic ratio(C/H) was dependent not on superficial velocity of N2 gas but heat-treating temperatures. Moreover, mesophase pitch behaved as typical non-newtonian fluids and showed viscosity variation for the fluidity according to mesophase contents. So, preparing mesophase of superior property was needed lower temperature and optimum ranges of superficial velocity of N2 gas on transforming mesophase.
  1. Otani S, Bull. Chem. Soc. Jpn., 45, 3710 (1972) 
  2. Levis IC, McHenry ER, Singer LS, U.S. Patent, 4,005,183 (1977)
  3. Scott CB, Floks HS, J. Mater., 26 (1972)
  4. Honda H, Yamada Y, Ceramic Data Book, Kogyoseihin Gijutsu Kyokai, Tokyo, 377 (1973)
  5. Brooks GD, Taylor GH, "The Formation of Some Graphitizing Carbon," Chemistry and Physics of Carbon (Ed. by Philip, L. and Walker, Jr. P.L.), 4, 243 (1968)
  6. White JL, Zimmer JE, Carbon, 16, 469 (1978) 
  7. Rhee B, Chun DH, In SJ, Edie DD, Carbon, 29, 343 (1991) 
  8. Sanada Y, Furuta T, Imura K, Ouchi K, J. Jpn. Petrol. Inst., 16, 398 (1973)
  9. Whittaker MP, Grindstaff LI, Carbon, 10, 165 (1972) 
  10. Goodarzi F, Murchison DG, Fuel, 57, 273 (1978) 
  11. Makabe M, Ouchi K, Itoh H, Carbon, 14, 365 (1976) 
  12. Park YD, Korai Y, Mochida I, J. Mater. Sci., 21, 424 (1986) 
  13. Dickakian GB, U.S. Patent, 4,551,225 (1985)
  14. Chiche P, Dedait J, Fischer FJ, Chem. Phys., 66, 28 (1969)
  15. Ball DR, "Estimation of Secondary QI," Carbon '80, Baden-Baden 299 (1980)
  16. Mochida I, Maeda K, Takeshita K, Carbon, 13, 489 (1975)