화학공학소재연구정보센터
International Journal of Heat and Mass Transfer, Vol.46, No.14, 2615-2627, 2003
Sharp-interface simulation of dendritic growth with convection: benchmarks
We present and validate a numerical technique for computing dendritic growth of crystals from pure melts in the presence of forced convection. The Navier-Stokes equations are solved on a fixed Cartesian mesh and a mixed Eulerian-Lagrangian framework is used to treat the immersed phase boundary as a sharp solid-fluid interface. A conservative finite-volume discretization is employed which allows the boundary conditions to be applied exactly at the moving surface. Results are presented for a range of the growth parameters, namely crystalline anisotropy, flow Reynolds number and Prandtl number. Direct comparisons are made between the present results and those obtained with phase-field methods and excellent agreement is obtained. Values for the tip characteristics are tabulated to serve as benchmarks for computations of two-dimensional dendritic growth with convection. (C) 2003 Elsevier Science Ltd. All rights reserved.