화학공학소재연구정보센터
Journal of Chemical Physics, Vol.118, No.20, 9208-9215, 2003
Single-pulse coherent anti-Stokes Raman spectroscopy in the fingerprint spectral region
Quantum coherent control techniques are applied to achieve high spectral resolution nonlinear vibrational spectroscopy using a single ultrashort laser source. By controlling the spectral phase of similar to10 fs pulses, we are able to obtain detailed coherent anti-Stokes Raman (CARS) spectra in the important fingerprint spectral region, which reflects the structural chemical information. A full theoretical analysis and an experimental demonstration of two alternative schemes leading to spectral resolution two orders of magnitude better than the pulse bandwidth are presented. The first involves selective excitation of vibrational levels within the pulse bandwidth by periodic modulation of the spectral phase of the pulse. In the second scheme an effective narrow probing of the vibrational level has been achieved by phase shifting of a narrow spectral band. Single-pulse CARS offers an attractive alternative to conventional multibeam nonlinear vibrational spectroscopy techniques. (C) 2003 American Institute of Physics.