화학공학소재연구정보센터
Journal of Colloid and Interface Science, Vol.260, No.2, 332-338, 2003
zeta potential measurement for air bubbles in protein solutions
Protein adsorption at gas-liquid inter-faces is important in a number of processes including foam formation in bioreactors, foam fractionation for protein recovery, and production of protein based food and drinks. The physical properties of the gas-liquid interface will influence foam stability; important properties will include both surface rheological and electrokinetic properties. While surface rheological properties of gas-protein solution interfaces have been reported, there are no published values for electrokinetic properties at such interfaces. In this paper, zeta potential values of gas bubbles in solutions of three proteins, measured using a microelectrophoresis technique, are reported. The three proteins chosen were BSA, beta-casein, and lysozyme; these proteins have all been used previously in protein foaming studies. The effect of protein concentration and ionic strength is considered. For BSA and beta-casein, zeta potential was found to increase with increasing protein concentration and ionic strength. For air bubbles in lysozyme solutions, measured zeta potential was zero. zeta potential values for air bubbles in some binary protein mixtures are also presented. (C) 2003 Elsevier Science (USA). All rights reserved.