화학공학소재연구정보센터
Journal of Colloid and Interface Science, Vol.261, No.1, 82-87, 2003
Preparation and electrochemistry of azobenzene self-assembled monolayers on gold - long range tunneling and end-group hydrogen bonding effect
A series of thiol-functionalied azobenzene derivatives (RAzoCnSH: R = H for n = 3-6, abbreviated as AzoCnSH; R = CH3CONH for n = 4. abbreviated as aaAzoC4SH) on gold electrodes were prepared and their self-assembly and electrochemical properties were studied by cyclic voltammetry. They all formed uniform and reproducible self-assembled monolayers (SAMs) on gold and showed well-behaved voltammetric responses in aqueous solution. Both the length of the alkyl chain spacer and the H-bonding of the end acetamino group had effects on the stability and the electrochemical kinetics of the SAMs, and the effect of the H-bonding was dominant. The surface coverage of the SAMs (AzoCnSH) is gradually increased with an increase of the alkyl chain spacer length, whereas the presence of the terminal acetamino group leads to a greater increase of the surface coverage. At a low scan rate, voltammetric responses corresponding to an irreversible two-electron, two-proton reduction/oxidation of the trans-azobenzene redox center were obtained in the range of +300 mV and -800 mV, which exhibited very large peak-to-peak splitting. At a high scan rate of 500 mV/s, two steps of reversible one-electron, one-proton reduction/oxidation corresponding to the cis-isomer in azobenzene-thiol SAMs (n is odd) was clearly observed between +300 and -200 mV. The apparent electron-transfer rate is decreased with increasing distance between the azobenzene redox center and the gold electrode. The existence of the end acetamino group which restricted the conformational change during the redox process also led to a decrease of the standard rate constant, and this restriction effect is more predominant than the distance effect. (C) 2003 Elsevier Science (USA). All rights reserved.