화학공학소재연구정보센터
Journal of Power Sources, Vol.117, No.1-2, 260-266, 2003
Correlation between charge input and cycle life of MgNi electrode for Ni-MH batteries
Amorphous MgNi material has been prepared by mechanically alloying magnesium and nickel powders for 10 h. Its cycle life as a negative electrode for nickel-metal hydride (Ni-MH) batteries has been studied with charge inputs varying from 0 to 600 mAh/g. For charge inputs lower than 400 mAh/g, the first cycle discharge capacity is superior to the charge input capacity. This surplus discharge capacity can be associated with the alloy oxidation to Mg(OH)(2) and Ni(OH)(2). For charge inputs higher than 400 mAh/g, the initial discharge capacity becomes inferior to the charge input capacity due to the progressive decrease of the charge efficiency related to the hydrogen evolution side reaction. From the second charge/discharge cycle, no additional discharge capacity appears and no discharge capacity degradation occurs for charge inputs inferior or equal to 233 mAh/g. In contrast, for higher charge input values, an important decay in the discharge capacity appears, which is accentuated with increasing charge input. The thresholds charge input of 233 mAh/g corresponds to an amount of hydrogen absorbed into the alloy of 0.8 wt.% (MgNiH0.7). For higher absorbed hydrogen amounts, it is assumed that extended electrode pulverization occurs, which breaks the passive surface layer of Mg(OH)(2) formed during the first charge/discharge cycle. This creates unprotected fresh MgNi surfaces and consequently, leads to electrode capacity degradation. The stability of the MgNi electrode for absorbed hydrogen content lower than 0.8 wt.% may be related to its amorphous character, which favors a gradual volume expansion upon hydrogen absorption in contrast to crystalline compounds characterized by an abrupt alpha-to-beta lattice expansion. (C) 2003 Elsevier Science B.V. All rights reserved.