화학공학소재연구정보센터
Polymer(Korea), Vol.27, No.3, 183-188, May, 2003
불소함유 에폭시 수지의 열적, 기계적 및 전기적 특성
Thermal, Mechanical, and Electrical Properties of Fluorine-Containing Epoxy Resins
E-mail:
초록
유전체 분광계를 사용하여 불소함유 에폭시 수지, 벤조트리플루오라이드의 다이글리시딜 에테르(FER)/다이아미노다이페닐메탄 (DDM)과 비스페놀 A의 다이글리시딜 에테르 (DGEBA)/DDM 시스템의 유전 상수를 측정하였으며, DMA와 TGA에 의한 열분석을 통하여 유리 전이 온도 및 열분해 개시온도, 최대 무게 감량시 온도, 그리고 분해 활성화 에너지 등 열안정성 인자를 고찰하였다. 경화된 시편의 기계적 물성은 파괴 인성, 굴곡강도 및 충격강도 실험을 통하여 알아보았으며, 주사전자 현미경을 사용하여 시편의 파단 특성을 조사하였다. 실험 결과, DGEBA/DDM 시스템에 비해 FER/DDM 시스템은 낮은 유전 상수를 나타내었으며, 경화된 시편의 기계적 물성은 높은 값을 나타내었다. 이는 trifluoromethyl (CF3) 기의 도입으로 인하여 전기적 특성과 기계적 물성이 증가한 것으로 사료된다.
The dielectric constants of fluorine-containing epoxy resins, 2-diglycidylether of benzotrifluoride(FER)/4,4'-diamino-diphenyl methane (DDM) and diglycidylether of bisphenol-A (DGEBA)/ DDM systems were evaluated by dielectric spectrometer. Glass transition temperature and thermal stability factors, including initial decomposed temperature, temperatures of maximum rate of degradation, and decomposition activation energy of the cured specimens were investigated by dynamic mechanical analysis and thermogravimetric analysis. For the mechanical properties of the casting specimens, the fracture toughness, flexural, and impact tests were performed, and their fractured surfaces were examined by scanning electron microscope. The dielectric constant of FER/DDM system was lower than that of commercial DGEBA/DDM system, and the mechanical properties of the cured specimens showed higher values than those of DGEBA/DDM system. This was probably due to the introduction of trifluoromethyl (CF3) group into the side chain of the epoxy resins, resulting in improving the electric and mechanical properties of the epoxy cure system studied.
  1. Wilks ES, "Industrial Polymers Handbook: Products, Processes, Applications," Wiley-VCH, New York (2001)
  2. Endo T, "Development and Applications of New Reactive Monomers," CMC, Tokyo (1993)
  3. Cassidy PE, Aminabhavi TM, Farley JM, J. Macromol. Sci.-Rev. Macromol. Chem. Phys., C29, 365 (1989)
  4. Bongiovanni R, Malucelli G, Messori M, Pilati F, Priola A, Tonelli C, J. Appl. Polym. Sci., 75, 651 (2000) 
  5. Stanbury JW, Antonucci JM, Dent. Mater., 15, 166 (1999) 
  6. Hamciuc E, hamciuc C, Sava I, Sava M, Bruma M, Macromol. Mater. Eng., 283, 36 (2000) 
  7. Gutch PK, Banerjee S, Gupta DC, Jaiswal DK, J. Polym. Sci. A: Polym. Chem., 39(3), 383 (2001) 
  8. Saegusa Y, Sakai T, J. Polym. Sci. A: Polym. Chem., 38(10), 1873 (2000) 
  9. Saegusa Y, Horikiri M, Sakai D, Nakamura S, J. Polym. Sci. A: Polym. Chem., 36(3), 429 (1998) 
  10. Xie K, Zhang SY, Liu JG, He MH, Yang SY, J. Polym. Sci. A: Polym. Chem., 39(15), 2581 (2001) 
  11. Liu JG, He MH, Li ZX, Qian ZG, Wang FS, Yang SY, J. Polym. Sci. A: Polym. Chem., 40(10), 1572 (2002) 
  12. Bongiovanni R, Malucelli G, Pollicino A, Priola A, J. Appl. Polym. Sci., 63(8), 979 (1997) 
  13. Rimdusit S, Ishida H, J. Polym. Sci. B: Polym. Phys., 38(13), 1687 (2000) 
  14. Park SJ, Kim HC, J. Polym. Sci. B: Polym. Phys., 39(1), 121 (2001) 
  15. Liaw DJ, J. Appl. Polym. Sci., 66(7), 1251 (1997) 
  16. Doyle CD, Anal. Chem., 33, 77 (1961) 
  17. Broido A, J. Polym. Sci. A: Polym. Chem., 7, 1761 (1969)
  18. Vora RH, Krishnan PSG, Goh SH, Chung TS, Adv. Funct. Mater., 5, 361 (2001) 
  19. Lin CH, Jiang ZR, Wang CS, J. Polym. Sci. A: Polym. Chem., 40, 4084 (2002) 
  20. Park SJ, Seo DI, Nah C, J. Colloid Interface Sci., 251(1), 225 (2002) 
  21. Park SJ, Seo MK, Ma TJ, Lee DR, J. Colloid Interface Sci., 252(1), 249 (2002) 
  22. Park SJ, Seo MK, Lee JR, Lee DR, J. Polym. Sci. A: Polym. Chem., 39(1), 187 (2001)