Polymer(Korea), Vol.27, No.4, 285-292, July, 2003
폴리락트산/폴리카프로락톤 블렌드의 결정화 거동
Crystallization Behavior of Poly(lactic acid)/Poly(ε-caprolactone) Blends
E-mail:
초록
폴리락트산/폴리카프로락톤 (PLA/PCL) 블렌드의 조성비에 따른 상용성 및 결정화 거동을 살펴보았다. 특히 triphenyl phosphite (TPP)가 반응 상용화제로써 이들 블렌드의 상용성과 결정화 거동에 미치는 영향을 중점적으로 고찰하였다. PLA/PCL 블렌드의 열적 특성을 살펴보아 이들 블렌드가 비상용성 블렌드임을 확인하였으며 블렌드의 조성비에 따라 상용성 정도가 달라졌다. 블렌드에 TPP를 첨가하는 경우, TPP가 반응 상용화제로 작용하여 블렌드의 상용성을 증가시키며 상용화제 함량 증가에 따라 상용성이 우수해졌다. PLA에 PCL을 첨가하는 경우, 블렌드 조성비에 따른 비상용 특성에 의한 계면 형성이 구정 형성에 필요한 기핵 발현 정도를 변화시켜 결정화 속도가 달라졌다. TPP는 이들 블렌드의 상용성의 개선과 동시에 구정 성장을 촉진하여 PLA의 결정화 속도를 증가시킴을 확인하였다.
The compatibility of poly(lactic acid)/poly(ε-caprolactone) (PLA/PCL) blends as a function of blend composition was studied and triphenyl phosphite (TPP) was applied to PLA/PCL blends as a reactive compatibilizer. Especially the effect of compatibility on the crystallization behavior in both PLA/PCL blends and PLA/PCL blends with TPP was considered. PLA/PCL blends were immiscible based on thermal characteristics of PLA/PCL blends and the miscibility was depand upon the blend composition. The enhancement of compatibility was found in PLA/PCL blends with TPP depend upon its content. The rate of crystallization in PLA/PCL blend varied qith blend composition. This was understood as the development of nucleation at the interface of PLA-PCL due to the immiscibility. TPP was acting as a compatibilizer as well as an agent for the acceleration of spherulite growth in PLA. As a result, the crystallization rate increased and the size of spherulite became larger than that of PLA/PCL blend without TPP.
Keywords:poly(lactic acid);poly(ε-caprolactone);blend;crystallization;compatibility;triphenyl phoshite
- Wise DL, Biopolymeric Controlled System, CRC Press, Boca Raton, Chapter 8, vol. 1 (1985)
- Leenslag JW, Gogolewski S, J. Appl. Polym. Sci., 29, 2829 (1984)
- Getter L, Cutright DE, J. Oral. Surg., 30, 344 (1972)
- Suh H, Polym. Sci. Technol., 10(6), 710 (1999)
- Park TG, Biomaterials, 16, 1123 (1995)
- Chen CC, Chueh J, Tseng H, Huang H, Lee S, Biomaterials, 24, 1167 (2003)
- Sheth M, Kumar RA, Dave V, Gross RA, Mccarthy SP, J. Appl. Polym. Sci., 66(8), 1495 (1997)
- Yoon JS, Oh SH, Kim MN, Chin IJ, Kim YH, Polymer, 40(9), 2303 (1999)
- Younes H, Dainel C, Eur. Polym. J., 24, 765 (1988)
- Gajria AM, Dave V, Gross RA, Mccarthy SP, Polymer, 37(3), 437 (1996)
- Wang L, Ma W, Gross RA, McCarthy SP, Polym. Degrad. Stabil., 59, 161 (1998)
- Tsuji H, Ikada Y, Polym. Prepr. Jpn., 43, 1194 (1994)
- Kim CH, Cho KY, Choi EJ, Park JK, J. Appl. Polym. Sci., 77(1), 226 (2000)
- Loomis GL, Murdoch JR, Gardner KH, Polym. Prepr., 32, 55 (1990)
- Dollinger HM, Swan SP, Polym. Prepr., 32, 429 (1990)
- Zhang LL, Xiong CD, Deng XM, J. Appl. Polym. Sci., 56(1), 103 (1995)
- Yang JM, Chen HL, You JW, Hwang JC, Polym. J., 29, 657 (1997)
- Han S, Moon TJ, Bae YC, Yi S, Lee SH, Polymer, 39(5), 1113 (1998)
- Dell'Erba R, Groeninckx G, Maglio G, Malinconico M, Migliozzi A, Polymer, 42(18), 7831 (2001)
- Jacques B, Devaux J, Legras R, Nield E, Polymer, 38(21), 5367 (1997)
- Jacques B, Devaux J, Legras R, Nield E, Macromolecules, 29(9), 3129 (1996)