- Previous Article
- Next Article
- Table of Contents
Korea-Australia Rheology Journal, Vol.15, No.2, 55-61, June, 2003
Wall slip of vaseline in steady shear rheometry
E-mail:
The steady shear flow properties of vaseline generally used as a base of the pharmaceutical dosage forms were studied in the consideration of wall slip phenomenon. The purpose of this study was to show that how slip may affect the experimental steady-state flow curves of semisolid ointment bases and to discuss the ways to eliminate (or minimize) wall slip effect in a rotational rheometer. Using both a strain-controlled ARES rheometer and a stress-controlled AR1000 rheometer, the steady shear flow behavior was investigated with various experimental conditions ; the surface roughness, sample preparation, plate diameter, gap size, shearing time, and loading methods were varied. A stress-controlled rheometer was suitable for investigating
the flow behavior of semisolid ointment bases which show severe wall slip effects. In the conditions of parallel plates attached with sand paper, treated sample, smaller diameter fixture, larger gap size, shorter shearing time, and normal force control loading method, the wall slip effects could be minimized. A critical shear stress for the onset of slip was extended to above 10,000 dyne/cm(2). The wall slip effects could not be perfectly eliminated by any experimental conditions. However, the slip was delayed to higher value of shear stress by selecting proper fixture properties and experimental conditions.
Keywords:vaseline;wall slip;steady shear flow behavior;strain-controlled rheometer;stress-controlled rheometer
-
Aral BK, Kalyon DM, J. Rheol., 38(4), 957 (1994)
-
Barnes HA, J. Non-Newton. Fluid Mech., 56(3), 221 (1995)
- Barry BW, Grace AJ, J. Pharm. Pharmacol., 22(S), 147 (1970)
- Barry BW, Grace AJ, J. Text. Studies, 2, 259 (1971)
- Barry BW, Rheology of Pharmaceutical and Cosmetic Semisolids, In H.S. Bean, A.H. Beckett, and J.E. Carless (eds.), Advances in Pharmaceutical Sciences, Vol. 4, Academic Press, New York (1974)
- Black WB, Graham MD, Phys. Fluids, 11, 1749 (1999)
-
Citerne GP, Carreau PJ, Moan M, Rheol. Acta, 40(1), 86 (2001)
-
Franco JM, Gallegos C, Barnes HA, J. Food Eng., 36(1), 89 (1998)
- Fu RCC, Lidgate DM, J. Pharm. Sci., 74, 290 (1985)
-
Gevgilili H, Kalyon DM, J. Rheol., 45(2), 467 (2001)
-
Ghanta VG, Riise BL, Denn MM, J. Rheol., 43(2), 435 (1999)
- Hatzikiriakos SG, Dealy JM, J. Rheol., 35, 497 (1991)
- Hatzikiriakos SG, Dealy JM, J. Rheol., 36, 703 (1992)
-
Hay G, Mackay ME, McGlashan SA, Park YS, J. Non-Newton. Fluid Mech., 92(2-3), 187 (2000)
-
Hill DA, J. Rheol., 42(3), 581 (1998)
-
Jana SC, Kapoor B, Acrivos A, J. Rheol., 39(6), 1123 (1995)
- Kalika DS, Denn MM, J. Rheol., 31, 815 (1987)
- Kalyon DM, Yaras P, Aral B, Yilmazer U, J. Rheol., 37, 35 (1993)
- Kraynik AM, Schowalter WR, J. Rheol., 25, 95 (1981)
- Longworth AR, French JD, J. Pharm. Pharmacol., 21, S1 (1969)
- Ma L, Barbosa-Canovas GV, J. Food Eng., 25, 397 (1995)
-
Mas R, Magnin A, J. Rheol., 38(4), 889 (1994)
- Meyvis T, Smedt SD, Stubbe B, Hennink W, Demeester J, Pharm. Res., 18, 1593 (2001)
- Mooney M, J. Rheol., 2, 210 (1931)
-
Munstedt H, Schmidt M, Wassner E, J. Rheol., 44(2), 413 (2000)
- Pena LE, Lee BL, Stearns JF, Pharm. Res., 11, 875 (1994)
-
Person TJ, Denn MM, J. Rheol., 41(2), 249 (1997)
-
Plucinski J, Gupta RK, Chakrabarti S, Rheol. Acta, 37(3), 256 (1998)
- Ramamurthy AV, J. Rheol., 30, 337 (1986)
- Yoshimura A, Prudhomme RK, J. Rheol., 32, 53 (1988)