화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.9, No.4, 440-446, October, 2003
Enhanced Photocatalytic Activity of TiO2 by Metal Doping for Degradation of VOCs in Air
E-mail:
The present work examined improving the photocatalytic activity of TiO2 by metal doping for the degradation of volatile organic compounds (VOCs), including gaseous trichloroethylene (TCE), acetone, methanol and toluene. The level of photocatalytic activity was determined to the type of dopant metal and VOC. To decompose TCE and acetone, palladium-doped TiO2 was found to be the best, whereas tungsten-doped TiO2 was good for methanol and toluene. When the effect of the heat treatment temperature on the metal-doped TiO2 was investigated, the photocatalytic degradation rate for acetone was highest for the doped TiO2 heated at 350 ℃, whereas the optimum temperature was found to be 450 ℃ for the doped TiO2 used to decompose the other VOCs. As regards the dopant level, the optimum amounts of metal were 1.0 wt% of palladium for TCE and acetone, 1.0 wt% of tungsten for toluene, and 1.5 wt% of tungsten for methanol.
  1. Mayers RA, Encyclopedia of Environmental Analysis and Remediation, John Wiley & Sons, Inc., New York (1998)
  2. Hoffmann MR, Martin ST, Choi WY, Bahnemann DW, Chem. Rev., 95(1), 69 (1995) 
  3. Litter MI, Appl. Catal. B: Environ., 23(2-3), 89 (1999)
  4. Sato S, White JM, Chem. Phys. Lett., 72, 83 (1980)
  5. Borgarello E, Kiwi J, Pelizzetti E, Visca M, Gratzel M, Nature, 289, 158 (1981)
  6. Choi WY, Termin A, Hoffmann MR, J. Phys. Chem., 98(51), 13669 (1994)
  7. Vorontsov AV, Savinov EN, Zhensheng J, J. Photochem. Photobiol. A-Chem., 125, 113 (1999)
  8. Herrmann JM, Tahiri H, Aitichou Y, Lassaletta G, Gonzalezelipe AR, Fernandez A, Appl. Catal. B: Environ., 13(3-4), 219 (1997)
  9. Kennedy JC, Datye AK, J. Catal., 179(2), 375 (1998)
  10. Lahtinen RM, Fermin DJ, Jensen H, Kontturi K, Girault HH, Electrochem. Commun., 2, 230 (2000)
  11. Molinari A, Amadelli R, Antolini L, Maldotti A, Battioni P, Mansuy D, J. Mol. Catal. A-Chem., 158, 521 (2000)
  12. Kim SB, Cha WS, Hong SC, J. Ind. Eng. Chem., 8(2), 162 (2002)
  13. Levenspiel O, Chemical Reaction Engineering, John Wiley & Sons, Inc., New York (1972)
  14. Linsebigler AL, Lu GQ, Yates JT, Chem. Rev., 95(3), 735 (1995)
  15. Fujii H, Ohtaki M, Eguchi K, Arai H, J. Mol. Catal. A-Chem., 129, 61 (1998)
  16. Gratzel M, Howe RF, J. Phys. Chem., 94, 2566 (1990)
  17. Bockelmann D, Goslich R, Bahnemann D, Solar Thermal Energy Utilization, Springer Verlag GmbH, Heidelberg (1992)