화학공학소재연구정보센터
HWAHAK KONGHAK, Vol.41, No.4, 517-523, August, 2003
술폰기가 도핑된 폴리피롤 제조 및 전기화학적 특성
Preparations and Electrochemical Characteristics of Polypyrrole Doped with Sulfone Group
E-mail:
초록
정전류 중합법으로 도펀트의 화학적 구조와 크기에 따라 폴리피롤 막을 ITO 전극위에 합성하고 전기화학적 특성을 알아보았다. 전해중합 효율은 SBA, PVS, BDS 순으로 증가하였고 합성 전기량의 증가에 따라서는 변화되지 않았다. SBA를 도펀트로 제조된 폴리피롤 막은 산화 과정에서 음이온 및 양이온 교환특성이 나타남을 CV를 통해 알 수 있었다. 도펀트가 BDS인 폴리피롤 막을 전류밀도 1 mA/cm(2)에서 가장 높은 속도 상수 값을 나타내었다. 또한 선형분극 법으로 측정한 확산계수는 이중층 용량 성분 때문에 임피던스 법으로 구한 값보다 크게 나타났다.
According to chemical structure and size of dopant, the polypyrrole films were prepared by constant current polymerization method on ITO electrode and its electrochemical properties were investigated. The current efficiency of polymerization of pyrrole was increased in the sequence 4-sulfobenzoic acid(SBA), polyvinylsulfonic acid(PVS), 1,3-benzenedisulfonic acid(BDS) and was unchanged with electricity of polymerization. As a result of cyclic voltammetry of polypyrrole film prepared with SBA as dopant, ion-exchange behavior both of anion and cation was observed during oxidation process. The maximum rate constant of polypyrrole doped with BDS was obtained at 1 mA/cm(2). In addition, the diffusion coefficient calculated by linear polarization method was more large than that measured by impedance analysis due to double layer capacitance.
  1. MacDiarmid AG, Epstein AJ, Synth. Met., 69, 85 (1995) 
  2. Osaka T, Momma T, Ito H, Scrosati B, J. Power Sources, 68(2), 392 (1997) 
  3. Yatsuda Y, Sakai H, Osaka T, Chem. Soc. Jpn., 7, 1331 (1985)
  4. Mackay RA, Texter J, "Electrochemistry in Colloids and Dispersions," VCH, New York, 217-234 (1995)
  5. Matsunaga T, Daifuku H, Kawagoe T, Chem. Soc. Jpn., 1(1), 1 (1990)
  6. Kroschwitz JI, "Electrical and Electronic Properties of Polymer," John Wiley & Sons, New York, 56-101 (1988)
  7. Somani PR, Radhakrishnan S, Mater. Chem. Phys., 77, 117 (2002)
  8. Morita M, Miyazaki S, Ishikawa M, Matsuda Y, Tajima H, Adachi K, Anan F, J. Electrochem. Soc., 142(1), L3 (1995) 
  9. Takeshita K, Wernet W, Oyama N, J. Electrochem. Soc., 141(8), 2004 (1994) 
  10. Shimidzu T, Ohtani A, Honda K, Bull. Chem. Soc. Jpn., 61, 2885 (1988) 
  11. Schaifker BR, Garcia-Pastoriza E, Marino W, J. Electroanal. Chem., 300, 85 (1991) 
  12. Mirmohseni A, Price WE, Wallace GG, J. Membr. Sci., 100(3), 239 (1995) 
  13. Bard AJ, Faulkner LR, Electrochemical Methods-Fundamentals and Application, John Wiley & Sons, New York (1980)
  14. Hujisima S, Aijawa M, Inoue T, Methods of Electrochemical Measurement, Kihoudo, Tokyo (1988)
  15. Gosser DK, Cyclic Voltammetry, VCH, New York (1993)
  16. Bull RA, Fan FF, Bard AJ, J. Electrochem. Soc., 129(5), 1009 (1982) 
  17. Housaka T, Denki Kagaku, 58(3), 218 (1990)
  18. Housaka T, Kadoma S, Denki Kagaku, 60(5), 369 (1992)
  19. Scully JR, Silverman DC, Kendig MW, Electrochemical Impedance: Analysis and Interpretation, ASTM, Philadelphia (1991)
  20. Armstrong RD, Lindholm B, Sharp M, J. Electroanal. Chem., 202, 69 (1986) 
  21. Rubinstein I, Rishpon J, Gottesfeld S, J. Electrochem. Soc., 133(4), 729 (1986) 
  22. Park JH, Lee SH, Kim JY, Joe YI, HWAHAK KONGHAK, 40(6), 729 (2002)