Macromolecules, Vol.36, No.11, 4017-4028, 2003
Multidimensional NMR studies of poly(ethylene-co-1-butene) microstructures
The microstructures, including tacticity (triad and tetrad stereoconformation) and comonomer sequence distribution, of poly(ethylene-co-1-butene) copolymer with different 1-butene contents were investigated by high-temperature (120 degreesC) two-dimensional (2D) nuclear magnetic resonance (NMR) spectroscopy at 750 MHz. The microstructures of these copolymers were analyzed by the combination of different NMR techniques including quantitative C-13 NMR, C-13 DEPT (distortionless enhancement by polarization transfer), pulsed-field-gradient (PFG) H-1-C-13 heteronuclear single quantum coherence (gHSQC), and heteronuclear multiple bond coherence (gHMBC). High temperature, along with multidimensional PFG NMR, facilitates the study of poly(ethylene-co-1-butene) copolymers by improving the resolution of resonances which otherwise have short T-2 (spin-spin) relaxation at ambient temperature. The combined information from 2D H-1-C-13 gHSQC, gHMBC, and quantitative 13C NMR experiments provided unambiguous resonance assignments from triad, tetrad, and, in a few cases, pentad comonomer sequence distributions of poly(ethylene-co-1-butene) with improved resolution in the regions of the spectrum containing the resonances of structures associated with ethyl branches. The copolymer with 41% 1-butene content synthesized using the metallocene catalyst system [(C5Me4)SiMe2N(t-Bu)]TiMe2/ MAO shows a mixture of both meso and racemic diads with predominantly racemic configuration, while another commercially available copolymer with 12% 1-butene content shows predominantly meso diads. Quantitative analysis of comonomer sequence distributions was determined from C-13 NMR data analysis.