Journal of the Korean Industrial and Engineering Chemistry, Vol.14, No.5, 657-665, August, 2003
황금(黃芩)성분, 바이칼레인의 항산화적 성질과 화장품에의 응용(제1보)
Antioxidative Properties of Baicalein, Component from Scutellaria baicalensis Georgi and Its Application to Cosmetics (I)
E-mail:
초록
황금(Scutellaria baicalensis Georgi)의 성분인 baicalein (5,6,7-trihydroxyflavone)을 포함하는 몇 가지 천연 항산화제들에 대하여 rose-bengal로 증감된 사람 적혈구의 광용혈에 대한 보호 효과를 조사하였다. Baicalein (10 ~ 100 μM)은 농도-의존적으로 광용혈을 억제하였다. 그리고 지질 과산화 연쇄반응의 차단제인 (+)-α-tocopherol 보다도 더 효과적이었다. Baicalein의 배당체인 baicalin, 수용성 항산화제인 L-Ascorbate, 철-킬레이트제인 diethylenetriamine-N,N,N',N'',N''-pentaacetic acid (DTPA)는 광용혈에 대하여 보호 효과를 나타내지 않았다. 1O2 소광제로 알려진 α-carotene-3,3'-diol (lutein)은 현저한 보호 효과를 보여주었다. 이는 rose-bengal로 증감된 광용혈에 있어서 1O2이 중요함을 가리킨다. L-Ascorbate (500 μM)는 광용혈을 촉진하였다. 하지만, ascorbate를 baicalein 용액에 첨가하면 상승적으로 보호 효과를 증가시켰다. Luminol-의존성 화학발광법을 이용하여, Fe3+-EDTA/H2O2 계에서 생성된 활성산소종(ROS)에 대한 몇 가지 천연 항산화제들의 ROS 소거활성을 측정하였다. 활성산소 소거활성(OSC50)의 크기는 DTPA 》baicalin 》L-ascorbate > (+)-α-tocopherol > baicalein 순으로 나타났다. Free radical (1,1-diphenyl-2-picrylhydrazyl, DPPH) 소거활성(FSC50)의 크기는 L-ascorbate > α-tocopherol > baicalein > baicalin 순으로 나타났다. Baicalein은 rose-bengal의 광증감반응에 의하여 산화되었다. 그 산화는 ascorbate에 의해 억제되었다. 이는 광용혈에 있어서 ascorbate와 baicalein의 협동작용이 플라본을 재생시키는 ascorbate에 의한 산화된 baicalein의 환원에 기인될 수 있음을 시사한다. 이상의 결과들은 baicalein이 1O2혹은 다른 ROS를 소광시키거나 소거함으로써 그리고 ROS에 대항하여 세포막을 보호하는데 있어서 ascorbate와 협동함으로써 생체계, 특히 태양 자외선에 노출된 피부에서 항산화제로서 작용할 수 있음을 가리킨다.
The protective effects of some natural components including baicalein (5,6,7-trihydroxyflavone) from Scutellaria baicalensis Georgi on the rose-bengal sensitized photohemolysis of human erythrocytes were investigated. Baicalein (10 ~ 100 μM) suppressed photohemolysis in a concentration dependent manner, and was more effective than the lipid peroxidation chain blocker, (+)-α-tocopherol. The glycoside of baicalein, baicalin, the water soluble antioxidant, L-ascorbate, and the iron chelator, diethylenetriamine-N,N,N',N'',N''-pentaacetic acid (DTPA), did not exhibit the protective effect against photohemolysis. α-Carotene-3,3'-diol (lutein) well known as singlet oxygen (1O2) quencher exhibited the pronounced protective effect, an indication that 1O2 is important in photohemolysis sensitized by rose-bengal. Ascorbate (500 μM) stimulated photohemolysis. However, baicalein with ascorbate promoted the protective effect synergistically. Reactive oxygen species scavenging activities (OSC50) of some natural antioxidants including baicalein on ROS generated in Fe3+-EDTA/H2O2 system using the luminol-dependent chemiluminescence assay were investigated. The order of reactive oxygen species scavenging activity was DTPA 》baicalin 》L-ascorbate > (+)-α-tocopherol > baicalein. OSC50 value of baicalein was 34.0 μM. The order of free radical (1,1-diphenyl-2-picrylhydrazyl, DPPH) scavenging activity (FSC50) was L-ascorbate > α-tocopherol > baicalein > baicalin. Baicalein was oxidized by the photosensitization of rose-bengal and the oxidation was suppressed by ascorbate. It is suggested that the cooperation of baicalein with ascorbate in photohemolysis may be due to reduction of oxidized baicalein by ascorbate regenerating the flavone. These results indicate that baicalein can function as antioxidants in biological systems, particularly skin exposed to solar radiation by quenching and/or scavenging 1O2 and other ROS, and cooperating with ascorbate in the protection of cellular membranes against ROS.
- Cadenas E, Annu. Rev. Biochem., 58, 79 (1989)
- Naqui A, Chance B, Cadenas E, Annu. Rev. Biochem., 55, 137 (1986)
- Fantone JC, Ward PA, Ann. J. Path., 107, 397 (1982)
- Davies KJA, J. Biol. Chem., 262, 9895 (1987)
- Foote CS, Photosensitized Oxidation and Singlet Oxygen; Consequences in Biological Systems, In Free Radical in Biology, ed. W.A. Pryor, 2, 85, Academic Press, New York (1976)
- Steinbeck MJ, Khan AU, Karnovsky MJ, J. Biol. Chem., 267, 13425 (1992)
- Park SN, Ph.D. Dissertation, Seoul National Univ., Seoul, Korea (1989)
- Park SN, J. Soc. Cos. Sci. Kor., 23, 75 (1997)
- Jurkiewicz BA, Buettner GR, Photochem. Photobiol., 59, 1 (1994)
- Packer L, Ultaviolet Radiation (UVA, UVB) and Skin Antioxidants, In Free Radical Damage and Its Control, eds. C.A. Rice-Evans and R.H. Burdon, 239 Elsevier Science B.V. (1994)
- Jurkiewicz BA, Bissett DL, Buettner GR, J. Invest. Dermatol., 104, 484 (1995)
- Thomas JP, Girotti AW, Photochem. Photobiol., 47, 79S (1988)
- Foote CS, Photochem. Phobobiol., 54, 659 (1991)
- Darr D, Fridovich I, J. Invest. Dermatol., 102, 671 (1994)
- Scharffetter-Kochanek K, Adv. Pharmacol., 38, 639 (1997)
- Kanofsky JR, Hoogland H, Wever R, Weiss SJ, J. Biol. Chem., 263, 9692 (1988)
- Tyrrell RM, Pidoux M, Photochem. Photobiol., 49, 407 (1989)
- Vile GF, Tyrrell RM, Free Radical Biology Medicine, 18, 721 (1995)
- Scharffetter-Kochanek K, Wlaschek M, Briviba K, Sies H, Febs Lett., 331, 304 (1993)
- Wlaschek M, Briviba K, Stricklin GP, Sies H, Scharffetter-Kochanek K, J. Invest. Dematol., 104, 194 (1995)
- Oikarinen A, Karvonen J, Uitto J, Hannuksela M, Photodermatology, 2, 15 (1985)
- Oikarinen A, Kallioinen M, Photodermatology, 6, 24 (1989)
- Klingman LH, UVA Induced Biochemical Changes in Hairless Mouse Skin Collagen: A Contrast to UVB Effects. In Biological Responses to Ultraviolet A Radiation, ed. F. Urbach, 209 Valdemar, Overland Park (1992)
- Koda A, Ann. N.Y. Acad. Sci., 685, 543 (1993)
- Nakajima T, Imanishi M, Yamamoto K, Cyong JC, Hirai K, Planta Med., 67, 132 (2001)
- Kimura Y, Natsushita N, Yokoi-Hayashi K, Okuda H, Planta Med., 67, 331 (2001)
- Kubo M, Kimura Y, Odani T, Tani T, Namba K, Planta Med., 43, 194 (1981)
- Kitamura K, Honda M, Yoshizaki H, Yamamoto S, Nakane H, Fukushima M, Ono K, Tokunaga T, Antiviral Res., 37, 131 (1998)
- Sekiya K, Okuda H, Biochem. Biophys. Res. Commun., 105, 1090 (1982)
- Gao D, Sakurai K, Katoh M, Chen J, Ogiso T, Biochem. Mol. Biol. Int., 39, 215 (1996)
- Yoshino M, Murakami K, Anal. Biochem., 257, 40 (1998)
- Gao D, Tawa R, Masaki H, Okano Y, Sakurai H, Chem. Pharm. Bull., 46, 1383 (1998)
- Aruoma OI, Halliwell B, Gajewski E, Dizdaroglu M, J. Biol. Chem., 264, 20509 (1989)
- Sharov VS, Kazamanov VA, Vladimirov YA, Free Radical Biology Medicine, 7, 237 (1989)
- Murphy ME, Sies H, Visible-range Low-Level Chemi-luminescence in Biological Systems, In Oxygen Radicals in Biological Systems, Oxygen Radicals and Antioxidants, eds. L. Packer and A.N. Glazer, 595 Academic Press, Inc. New York (1993)
- Fujita Y, Uehara I, Morimoto Y, Nakashima M, Hatano T, Okuda T, Yakugaku Zasshi, 108, 129 (1988)
- Girotti AW, Thomas JP, Jordam JE, Photochem. Photobiol., 41, 267 (1985)
- Bissett DL, Chatterjee R, Hannon DP, Photochem. Photobiol., 54, 215 (1991)
- Bissett DL, McBride JF, J. Soc. Cosmet. Chem., 43, 215 (1992)
- Gutteridge JMC, Rowley DA, Halliwell B, Cooper DF, Heeley DM, Clin. Chim. Acta, 145, 267 (1985)
- Fahrenholtz SR, Doleiden FH, Trozolo AM, Lamola AA, Photochem. Photobiol., 20, 505 (1974)
- Matuura T, Matsushima H, Nakashima R, Tetrahedron, 26, 435 (1970)
- Ikebata W, Shibata A, Sakanaka T, Urano S, Location of α-tocopherol in Phospholipid Vesicles and Its Dynamics in Inhibiting Lipid Peroxidation, In Vitamin E -Its Usefulness in Health and in Curing Diseases, ed. M. Mino, 31, Japan Sci. Soc. Press, Tokyo/S, Karger, Basel (1993)