Polymer(Korea), Vol.27, No.5, 429-435, September, 2003
양이온성 η3-알릴 팔라듐 촉매를 사용한 노보넨/5-비닐-2-노보넨의 비닐 부가 공중합과 이를 이용한 고분자 후반응
Vinyl Addition Copolymerization of Norbornene/5-Vinyl-2-norbornene with Cationic η3-Allyl Palladium Catalyst and Their Post-Reaction
E-mail:
초록
양이온 η3-알릴 팔라듐 촉매를 사용하여 환상형 올레핀 단량체인 노보넨 (NB)과 5-비닐-2-노보넨(VNB)을 조성별로 비닐 부가 공중합하였다. 공중합체는 고수율과 고분자량 (Mw>760000)으로 얻을 수 있었다. VNB 함량이 많아질수록 공중합체의 분자량과 수득율은 감소하였으며, 첨가한 공단량체의 양과 공중합한 후 함유된 단량체의 양이 비례함을 FT-IR 분광분석으로 확인하였다. 1H-NMR 분석 결과 VNB는 exo, endo 이성체 모두 중합에 참여하는 것을 알 수 있었다. NB-VNB 공중합체의 분해 개시 온도는 약 300 ℃이었고, 열안정성은 VNB 함량과 관계없이 유사한 거동을 나타내었다. 합성된 NB-VNB 공중합체의 곁사슬 비닐기는 m-CPBA를 이용하여 에폭시화 하였고, 또한 9-BBN을 이용하여 수산화기를 도입하였다. 조성별 공중합체에 각각의 치환기가 도입된 것은 FT-IR, 1H-NMR분석으로 확인하였다.
Vinyl addition copolymerizations of norbornene (NB) and 5-vinyl-2-norbomene (VNB) were carried out using a cationic η3-allyl palladium catalyst in the various mole ratio of comonomers. The copolymers could be obtained in good yield (65 ~ 85 %) with high weight-average molecular weights (Mw>760,000). Depending on increasing VNB contents, the molecular weight and yield of the copolymers decreased. FT-IR analysis confirmed that actual contents of VNB in polymer were proportional to the feeding content of VNB. From 1H-NMR spectroscopy, we found that both exo and endo VNB isomer were copolymerized with NB. Thermal stabilities of NB-VNB copolymers were independent on the VNB content and their initial decomposition temperatures were about 300 ℃. The NB-VNB copolymers were followed by epoxidation by using m-CPBA and hydroxylation by 9-BBN, respectively, and these post-polymers were characterized by FT-IR spectroscopy and 1H-NMR analysis.
Keywords:allyl palladium;norbornene;5-vinyl-2-norbornene;vinyl addition polymerization;epoxidation;hydroxylation
- Grove NR, Kohl PA, Allen SAB, Jayaraman S, Shick R, J. Polym. Sci. B: Polym. Phys., 37(21), 3003 (1999)
- Dorkenoo KD, Pfromm PH, Rezac ME, J. Polym. Sci. B: Polym. Phys., 36(5), 797 (1998)
- Zhao C, Ribeiro MD, de Pinho MN, Subrahmanyam VS, Gil CL, de Lima AP, Polymer, 42(6), 2455 (2001)
- Heinz BS, Alt FP, Heitz W, Macromol. Rapid Commun., 19, 251 (1998)
- Gaylord NG, Deshpande AB, Mandal BM, Martan M, J. Macromol. Sci.-Chem., A11(5), 1053 (1997)
- Goodall BL, Mclntosh LH, Rhodes LF, Macromol. Symp., 89, 421 (1995)
- Haselwander TFA, Heitz W, Krugel SA, Wendorff JH, Macromol. Chem. Phys., 197, 3435 (1996)
- Kim I, React. Funct. Polym., 49, 197 (2001)
- Marathe S, Sivaram S, Macromolecules, 27(5), 1083 (1994)
- Lasarov H, Pakkanen TT, Macromol. Rapid Commun., 20, 356 (1999)
- Lipian J, Mimna RA, Fondran JC, Yandulov D, Shick RA, Goodall BL, Rhodes LF, Huffman JC, Macromolecules, 35(24), 8969 (2002)
- Lipian JH, Rhodes LF, Goodall BL, Bell A, Mimna RA, Fondran JC, Jayaraman S, Hennis AD, Elia CN, Polley JD, Sen A, U.S. Patent, 6,455,650 (2002)
- Endo K, Fuji K, Otsu T, Makromol. Chem. Rapid Commun., 12, 409 (1991)
- Lohse DJ, Datta S, Kresge EN, Macromolecules, 24, 561 (1991)
- Zhao CT, Ribeiro MDR, Portela MF, J. Mol. Catal. A-Chem., 185, 81 (2002)
- Melia J, Connor E, Rush S, Breunig S, Mehler C, Risse W, Macromol. Symp., 89, 443 (1995)