화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.20, No.5, 967-972, September, 2003
Promotion of CO2 Hydrogenation to Hydrocarbons in Three-Phase Catalytic (Fe-Cu-K-Al) Slurry Reactors
E-mail:
A three-phase slurry reactor has been employed to increase the CO2 conversion and decrease the selectivity of CO in the direct hydrogenation of CO2 to hydrocarbons, as it is beneficial for removal of the heat generated due to highly exothermic nature of the reaction. Experiments were conducted over iron-based catalysts (Fe-Cu-K-Al, dp=45-75 mm) in a slurry reactor. It was found that the slurry reactor is preferable to the fixed bed reactor. The productivity and selectivity of hydrocarbons in the slurry reactor appeared to be better than that in the fixed bed reactor for the hydrogenation of CO2. The CO2 conversion was increased with increasing reaction temperature (275-300 ℃), pressure (1-2.5 MPa) or H2/CO2 ratio (2-5) in the three-phase slurry reactor. The CO2 conversion was increased with increasing the amount of CO2 fed.
  1. Ando H, Xu Q, Fujiwara M, Matsumura Y, Tanaka M, Souma Y, Catal. Today, 45(1-4), 229 (1998) 
  2. Aresta M, "Perspectives of Carbon Dioxide Utilization in the Synthesis of Chemicals. Coupling Chemistry with Biotechnology," Proceedings of the 4th ICCDU, Kyoto, Japan, Sep. 7-11, 114, Elsevier Science B.V. (1997)
  3. Barrault J, Forquy C, Menezo J, Maurel R, React. Kinet. Catal. Lett., 17, 373 (1981) 
  4. Bukur DB, Lang XS, Ind. Eng. Chem. Res., 38(9), 3270 (1999) 
  5. Choi PH, Jun KW, Lee SJ, Choi MJ, Lee KW, Catal. Lett., 40(1-2), 115 (1996) 
  6. Choi MJ, Kim JS, Kim HK, Lee SB, Kang Y, Lee KW, Korean J. Chem. Eng., 18(5), 646 (2001)
  7. Dry ME, Chem. Tech., Dec., 744 (1982)
  8. Halmann M, "Chemical Fixation of Carbon Dioxide: Methods for Recycling CO2 into Useful Products," CRC Press, Inc., New York (1993)
  9. Hong JS, Hwang JS, Jun KW, Sur JC, Lee KW, Appl. Catal. A: Gen., 218(1-2), 53 (2001) 
  10. Jager B, Espinoza R, Catal. Today, 23(1), 17 (1995) 
  11. Kang Y, Cho YJ, Woo KJ, Kim SD, Chem. Eng. Sci., 54(21), 4887 (1999) 
  12. Kim SD, Kang Y, Chem. Eng. Sci., 52(21-22), 3639 (1997) 
  13. Lee MD, Lee JF, Chang CS, Bull. Chem. Soc. Jpn., 62, 2756 (1989) 
  14. Nam SS, Lee SJ, Kim H, Jun KW, Choi MJ, Energy Conv. Manag., 38, S397 (1997)
  15. Raje AP, Davis BH, Catal. Today, 36(3), 335 (1997) 
  16. Riedel T, Schaub G, Jun KW, Lee KW, Ind. Eng. Chem. Res., 40(5), 1355 (2001) 
  17. Sanders E, Ledakowicz S, Deckwer WD, Can. J. Chem. Eng., 64, 133 (1986)
  18. Tan YS, Fujiwara M, Ando H, Xu Q, Souma Y, Ind. Eng. Chem. Res., 38(9), 3225 (1999) 
  19. Xiaoding X, Moulijin JA, Energy Fuels, 10, 350 (1996)
  20. Xu LY, Wang QX, Liang DB, Wang X, Lin LW, Cui W, Xu YD, Appl. Catal. A: Gen., 173(1), 19 (1998) 
  21. Yan SR, Jun KW, Hong JS, Lee SB, Choi MI, Lee KW, Korean J. Chem. Eng., 16(3), 357 (1999)
  22. Yan SR, Jun KW, Hong JS, Choi MJ, Lee KW, Appl. Catal. A: Gen., 194-195, 63 (2000)