화학공학소재연구정보센터
HWAHAK KONGHAK, Vol.36, No.3, 460-466, June, 1998
전해중합법을 이용한 폴리피롤 전극의 제조와 특성에 관한 연구
A Study on the Characteristics of Polypyrrole Electrodes Prepared by Electrochemical Polymerization Method
초록
본 연구에서는 정전위 전해중합법으로 분자량이 다른 전해질 음이온이 함침된 폴리피를 전극을 전기량에 따라 제조하였으며, CV 및 교류 임퍼던스법을 이용한 전기화학적 분석 및 형태학적 분석을 통해 제조된 전극의 특성을 고찰하였다. 제조된 전극을 전기화학적으로 분석한 결과 PPy/ClO4- 전극은 음이온의 도핑·탈도핑이, PPy/PVS- 전극은 양이온의 탈도핑 ·도핑이 일어나고 있음을 잘았다. 전기량이 증가할수록 PPy/ClO4- 전극과 PPy/PVS- 전극의 전하전달저항은 감소하였고, 이중층 용량은 증가하였다. 전기량 증가에 따라 전극 표면적은 증가하였으며, 전기량에 따른 형태학적 변화가 PPy/PVS- 전극보다 PPy/ClO4- 전극의 전기이중층 용량의 변화에 큰 영향을 끼치는 인자임을 알 수 있었다.
In this study, the p-type PPy/ClO4- and polyanion-doped PPy/PVS- polymer electrodes were prepared at various polymerization electric charges by incorporating electrolyte anions of different molecular weight during potential step polymerization. The surfaces of the prepared electrodes were inspected by SEM and their electrochemical properties were investigated with CV and ac impedance method. The results suggested that anion was mobile ion for PPy/ClO4- electrode and cation for PPy/PVS- electrode during redox reaction. As polymerization electric charges increased, the charge transfer resistances were decreased and the electric double layer capacitances were increased in the both electrodes. The surface areas of both electrode increased as polymerization electric charges increased. Especially, the morphological exchanges of surface may be more important effect in the electric double layer capacitance for PPy/ClO4- electrode than for PPy/PVS- electrode.
  1. Yuji Y, Hiroshi S, Tetsuya O, Chem. Soc. Jpn., 1331 (1985)
  2. Mackay RA, Texter J, "Electrochemistry in Colloids and Dispersions," VCH, New York, 225 (1995)
  3. Tsutomu M, Hidehara D, Takahiro K, Chem. Soc. Jpn., 1 (1990)
  4. Kroschwitz JI, "Electrical and Electronic Properties of Polymer," John Wiley & Sons, New York, 56 (1988)
  5. Tetsuya O, Shoji M, Denki Kagaku, 58(5), 369 (1992)
  6. Tonakzu I, Hideo T, Mamoru F, Reiko N, Hajime T, Kenichi H, Takeo S, J. Phys. Chem., 95, 5215 (1991) 
  7. Heo G, Lee DH, Kim KH, J. Appl. Polym. Sci., 54(7), 849 (1994) 
  8. Takesi H, Koseinou Denchino Saisinn Mannual, Soudougishutu Center, Tokyo
  9. Tetsuya O, Denki Kagaku, 58(3), 218 (1990)
  10. Tetsuya O, Katsuhiko N, Satoshi O, J. Electrochem. Soc., 134(9), 2096 (1987) 
  11. Takeo S, Akira O, Kenichi H, Bull. Chem. Soc. Jpn., 61, 2885 (1988) 
  12. Shou H, Denkikagakusokuteihou(I, II), Gihoudou Co., Tokyo, 209 (1988)
  13. Bull RA, Fan FF, Bard AR, J. Electrochem. Soc., 129(52), 1009 (1982) 
  14. Bard AJ, Faukner LR, "Electrochemical Methods-Fundamentals and Applications," John Wiley & Sons, 316 (1984)
  15. Lee SJ, Choi KH, Lee TH, Cho WI, Rho YW, Kho YT, HWAHAK KONGHAK, 34(2), 188 (1996)
  16. Naoi K, Oura Y, Maeda M, Nakamura S, J. Electrochem. Soc., 142(2), 417 (1995)