화학공학소재연구정보센터
Journal of Chemical Physics, Vol.119, No.4, 2376-2385, 2003
Theoretical evaluation of hydrogen storage capacity in pure carbon nanostructures
Carbon nanotubes have been proposed as promising hydrogen storage materials for the automotive industry. By theoretical analyses and total-energy density functional theory calculations, we show that contribution from physisorption in nanotubes, though significant at liquid nitrogen temperature, should be negligible at room temperature; contribution from chemisorption has a theoretical upper limit of 7.7 wt %, but could be difficult to utilize in practice due to slow kinetics. The metallicity of carbon nanotube is lost at full hydrogen coverage, and we find strong covalent C-H bonding that would slow down the H-2 recombination kinetics during desorption. When compared to other pure carbon nanostructures, we find no rational reason yet why carbon nanotubes should be superior in either binding energies or adsorption/desorption kinetics. (C) 2003 American Institute of Physics.