Journal of Chemical Physics, Vol.119, No.6, 3509-3515, 2003
Computer simulations of a liquid crystalline dendrimer in liquid crystalline solvents
Molecular dynamics simulations have been carried out to study the structure of a model liquid crystalline dendrimer (LCDr) in solution. A simplified model is used for a third generation carbosilane LCDr in which united atom Lennard-Jones sites are used to represent all heavy atoms in the dendrimer with the exception of the terminal mesogenic groups, which are represented by Gay-Berne potentials. The model dendrimer is immersed in a mesogenic solvent composed of Gay-Berne particles, which can form nematic and smectic-A phases in addition to the isotropic liquid. Markedly different behavior results from simulations in the different phases, with the dendrimer changing shape from spherical to rodlike in moving from isotropic to nematic solvents. In the smectic-A phase the terminal mesogenic units are able to occupy five separate smectic layers. The change in structure of the dendrimer is mediated by conformational changes in the flexible chains, which link the terminal mesogenic moieties to the dendrimer core. (C) 2003 American Institute of Physics.