Journal of the American Chemical Society, Vol.125, No.33, 10012-10018, 2003
2'-mercaptonucleotide interference reveals regions of close packing within folded RNA molecules
The 2'-hydroxyl group makes essential contributions to RNA structure and function. As an approach to assess the ability of a mercapto group to serve as a functional analogue for the 2'-hydroxyl group, we synthesized 2'-mercaptonucleotides for use in nucleotide analogue interference mapping. To correlate the observed interference effects with tertiary structure, we used the independently folding DeltaC209 P4-P6 domain from the Tetrahymena group I intron. We generated populations of DeltaC209 P4-P6 molecules containing 2'-mercaptonucleotides located randomly throughout the domain and separated the folded molecules from the unfolded molecules by nondenaturing gel electrophoresis. Iodine-induced cleavage of the RNA molecules revealed the sites at which 2'-mercaptonucleotides interfere with folding. These interferences cluster in the most densely packed regions of the tertiary structure, occurring only at sites that lack the space and flexibility to accommodate a sulfur atom. Interference mapping with 2'-mercaptonucleotides therefore provides a method by which to identify structurally rigid and densely packed regions within folded RNA molecules.