Journal of the American Chemical Society, Vol.125, No.24, 7250-7257, 2003
Construction of giant dendrimers using a tripodal building block
Giant pentane-soluble organo-silicon dendrimers have been synthesized using a triallylphenol brick according to a new divergent construction that uses a hydrosilylation-nucleophilic substitution sequence up to the ninth generation (G(9)). All the reactions were monitored by H-1, C-13, and Si-29 NMR until G(9), indicating that they were clean at the NMR accuracy until this last generation. MALDI TOF mass spectra were recorded for G(1) to G(4) and show the nature and amounts of defects that are intrinsic to the divergent construction. This technique and SEC (recorded up to G(5)) confirm the monodispersity (1.00 to 1.02) from G(1) to G(5). HRTEM and AFM images recorded for the high generations disclose the expected smooth dendrimer size progression and the globular shape. At G(9), the theoretical number of termini (TNT) is 177 407 branches (abbreviation: G(9)-177 047). It is estimated that more than 10(5) terminal branches are actually present in the G(9) dendrimer, far beyond the De Gennes "dense-packing" limit (6000 branches), and it is believed that the branch termini turn inside the dendrimer toward the core. This is corroborated by lower reaction rates and yields for the highest generation numbers presumably due to intradendritic reactions. It is probable that the dendritic construction is limited by the density of branches inside the dendrimer, i.e., far beyond the dense-packing limit.