Journal of the American Chemical Society, Vol.125, No.24, 7435-7442, 2003
Three-coordinate aluminum in zeolites observed with in situ X-ray absorption near-edge spectroscopy at the AlK-edge: Flexibility of aluminum coordinations in zeolites
Application of in situ X-ray absorption near-edge spectroscopy (XANES) at the Al K-edge provides unique insight into the flexibilty of the aluminum coordinations in zeolites as a function of treatment or during true reaction conditions. A unique, previously not observed, pre-edge feature is detected in zeolites H-Mordenite and steamed and unsteamed H-Beta at temperatures above 675 K. Spectra simulations using the full multiple scattering code Feff8 identify the unique pre-edge feature as three-coordinate aluminum. The amount of three-fold coordinated aluminum is a function of temperature and pretreatment of a zeolite: a steamed zeolite Beta contains more three-coordinate aluminum than an unsteamed sample. No clear differences between zeolites H-Mordenite and H-Beta were observed. Octahedrally coordinated aluminum forms in zeolites H-Mordenite and H-Beta at room temperature in a stream of wet helium. This octahedrally coordinated aluminum is unstable at temperatures higher than 395 K, where it quantitatively reverts to the tetrahedral coordination.