화학공학소재연구정보센터
HWAHAK KONGHAK, Vol.36, No.5, 661-668, October, 1998
H2/CO 혼합기체의 열효과에 의한 파괴특성
Effect of Temperature Variation on Breakthrough Curve in H2/CO System
초록
제올라이트 5A로 충전된 흡착탑의 파과곡선에 대한 온도변화의 영향을 등온, 단열, 비등 비단열 모형을 이용하여 이론적으로 연구하였다 원료기체로는 coke oven gas의 대부분을 차지하는 H2CO(70/30volume %)혼합기체를 대상으로 실험실규모의 흡착탑과 Pilot Plant규모의 흡착탑에 대해 모사를 수행하였다. 상용 프로그램인 ADSIM/SU를 사용하여 물질수지, 에너지 수지와 모멘텀 수지를 고려한 모형을 사용하였으며, LDF 모델과 Langmuir-Freundlich 모델을 적용하였다. 비등온 파과실험결과에 비등온-비단열 모델을 적용하여 모형의 유효성을 확인하였으며, 이 경우 파과 후 늘어짐 현상은 도입류에 의한 지속적인 온도 감소가 일어나는 경우 발생하였다. Pilot 규모의 모사 결과에서는 흡착탑 부피 증가에 의한 흡착제 자체의 단열효과로 인하여 흡착탑은 단열상태와 유사한 거동을 보여 주었다. 또한 벌크 분리 공정에서 흡착탑의 동특성이 흡착탑의 온도변화에 민감하게 영향을 받게 되어 등온 모델과는 많은 차이를 보여 주었다.
The effect of temperature variation on the breakthrough curve in the bed packed by zeolite 5A was studied theoretically in the isothermal, adiabatic and nonisothermal- nonadiabatic systems. The H2/CO(70/30 volume %) mixture which is two major components of coke oven gas was used as a feed gas. The commercial ADSIM/SU program was used for the simulation incorporating the mass, energy and momentum balances with linear driving force and Langmuir-Freundlich isotherm models. The validity of nonisothermal-nonadiabatic model used in this study was confirmed by using the nonisothermal experimental breakthrough curve obtained from the bench scale bed. The tailing of breakthrough curve in the nonisothermal-nonadiabatic condition occurred due to the decrease of temperature profile in the small scale bed by the feed gas. In the case of the pilot scale bed, the temperature profile and breakthrough curve under the nonisothermal-nonadiabatic condition showed similar behavior with those under the adiabatic condition because of the adiabatic effect of the adsorbent in the bed. Since the dynamics of adsorption bed is affected by the temperature variation in the bulk .separation, the isothermal model makes large errors predict the breakthrough curve.
  1. Yang RT, "Gas Separation by Adsorption Processes," Butter-worths (1987)
  2. Suzuki M, "Adsorption Engineering," Kosansha (1990)
  3. Ruthven DM, "Principles of Adsorption & Adsorption Processes," Wiley-Interscience (1984)
  4. Skarstrom CW, Ann. NY Acad. Sci., 72, 751 (1959)
  5. Wankat PC, "Rate-Controlled Separations," Elsevier Applied Science (1991)
  6. Sircar S, Kumar R, Sep. Sci. Technol., 21, 919 (1983)
  7. Nagel G, Kluge G, Flock W, Chem. Eng. Sci., 42, 143 (1987) 
  8. Kluge G, Flock W, Nagel G, Chem. Eng. Sci., 42, 155 (1987) 
  9. Hwang KS, Jun JH, Lee WK, Chem. Eng. Sci., 50(5), 813 (1995) 
  10. Hwang KS, Choi* DK, Gong SY, HWAHAK KONGHAK, 36(2), 159 (1998)
  11. Yang JY, Lee CH, AIChE J., 44(6), 1325 (1998) 
  12. Yang JY, Lee CH, Chang JW, Ind. Eng. Chem. Res., 36(7), 2789 (1997) 
  13. Yang J, Cho C, Baek KH, Lee CH, HWAHAK KONGHAK, 35(4), 545 (1997)
  14. Yang J, Park MW, Chang JW, Ko SM, Lee CH, Korean J. Chem. Eng., 15(2), 211 (1998)
  15. Buzanowski MA, Yang RT, Chem. Eng. Sci., 46, 2589 (1991) 
  16. Doong SJ, Yang RT, AIChE J., 32, 397 (1986) 
  17. Doong SJ, Yang RT, AIChE J., 31, 1829 (1986) 
  18. ADSIM User Manual: Aspen Technology Inc. (1996)
  19. Do DD, Mayfield PLJ, AIChE J., 33, 1392 (1987)
  20. Do DD, Rice RG, AIChE J., 32, 149 (1986) 
  21. Crank J, "The Mathematics of Diffusion," 2nd Ed., Clarendon Press (1975)
  22. Alpay E, Scott DM, Chem. Eng. Sci., 47, 499 (1992) 
  23. Cen P, Yang RT, Sep. Sci. Technol., 20, 725 (1985)
  24. Sun LM, Meunier F, AIChE J., 37, 244 (1991) 
  25. Farooq S, Ruthven DM, Ind. Eng. Chem. Res., 29, 1076 (1990) 
  26. Farooq S, Ruthven DM, Ind. Eng. Chem. Res., 29, 1084 (1990) 
  27. Han S, Yang J, Lee CH, Lee H, HWAHAK KONGHAK, 34(3), 277 (1996)