Polymer, Vol.44, No.16, 4557-4562, 2003
Micromechanical properties of glassy and rubbery polymer brush layers as probed by atomic force microscopy
Carboxylic acid terminated polystyrene and polybutylacrylate were grafted from melt onto a silicon substrate modified with the epoxysilane monolayer. The tethered layers fabricated from polymers of different molecular weights are smooth, uniform, mechanically stable, and cover homogeneously the modified silicon surface. Micromechanical properties of the dry glassy and rubbery brush layers were measured with atomic force microscope. We observed that for the PS layers with the thickness higher than 7 nm, the average value of the elastic moduli reached 1.1 GPa, which is close, but still lower than the expected for bulk polymer. The elastic modulus of PS polymer brush layers dramatically depends upon molecular weight and follows the inverse law with segment molecular weight, M, of 18,000 known for bulk PS. This result indicates that the process of the formation of the physical network within polymer melt of chains tethered to a solid substrate is similar to that occurring in unconstrained polymer melt. Under these conditions, three PS brush layers studied in this work represent different cases of chains without stable entanglements for M < M-c as well as chains with stable entanglements for brushes with M similar to M-c. This transition shows itself in significant reduction of the compliance reflected in twofold increase in elastic modulus. Our estimation predicts that modest lowering of 'limiting' elastic modulus of 1.4 GPa can be expected for thicker polymer brushes. (C) 2003 Elsevier Science Ltd. All rights reserved.