Applied Biochemistry and Biotechnology, Vol.110, No.1, 23-32, 2003
Solid-phase reducing agents as alternative for reducing disulfide bonds in proteins
Disulfide reduction of Kluyveromyces lactis and Aspergillus oryzae beta-galactosidases and beta-lactoglobulin was assessed. Reduction was performed using one of two thiol-containing agents: dithiothreitol (DTT) or thiopropyl-agarose with a high degree of substitution (1000 mumol of SH groups/g of dried gel). Both reductants allowed an increase of three- (for K. lactis beta-galactosidase) and fourfold (for A. oryzae beta-galactosidase) in the, initial content of SH groups in the lactases. Nearly sevenfold fewer micromoles of SH groups per milligram of protein were needed to perform the reduction of K. lactis beta-galactosidase with thiopropyl-agarose than for the same reduction with DTT. However, for A. oryzae beta-galactosidase, nearly twice as many micromoles of SH groups per milligram of protein were needed with thiopropylagarose than with DTT. Disulfide bonds in beta-lactoglobulin were not accessible to thiopropyl-agarose, since this reduction was only possible in the presence of 6 M urea. These results proved that highly substituted thiopropyl-agarose is as good a reducing agent as DTT, for the reduction of disulfide bonds in proteins. Moreover, excess reducing agent was very simply separated from the reduced protein by filtration, making it easier to control the reaction and providing reduced protein solutions free of reductant. All these advantages substantially cut down the time required and therefore the cost of the overall process.
Keywords:protein reduction;reducing agents;immobilized reductants;disulfide reductants;sulffiydryl residues;disulfide reduction;cystine bonds