Chemical Engineering Communications, Vol.190, No.5-8, 976-985, 2003
Scanning electron microscopic studies of porous carbon electrodes used in alkaline fuel cells
Multilayer, polytetrafluoroethylene (PTFE)-bonded gas diffusion-type electrodes were prepared by the rolling method. Changing the electrode structure and manufacturing method improved alkaline fuel cell performance. Activated carbon or carbon black was used as the support material, with platinum as a catalyst and nickel screen as the backing material. Double-layer electrodes possessed both active and diffusion layers on the backing layer. However, the single-layer electrodes had only the active layer on the backing layer. The electrodes were prepared by using different PTFE contents and platinum loadings.In this study the surface photographs of the electrodes were taken with a scanning electron microscope. Elemental analyses of the surface elements were performed by energy dispersive X-ray spectroscopy (EDXS). Electrodes having activated carbon on their surfaces were observed to possess a nonuniform and porous structure. These electrodes showed better performance than electrodes having carbon black, which presented a uniform and nonporous structure.
Keywords:alkaline fuel cell;electrode surface;hydrogen;oxygen;porous gas diffusion electrodes;scanning electron micrograph