화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.14, No.6, 769-773, October, 2003
나노 복합재료용 천연 벤토나이트의 특성
Characteristics of Natural Bentonite Used for Nanocomposites
E-mail:
초록
국산 천연 벤토나이트를 에폭시 나노 복합재료에 도입기 위해서 정제한 후, 유기화제로 처리하였다. 유기화제로는 1-butyl amine (BA), 1-octyl amine (OA), 1-hexadecylamine (HDA), 1-octadecylamine (ODA), cetyltrimethylammonium bromide (CTMA) 및 octadecyltriethylammonium bromide (ODTMA)등을 사용하였다. 에폭시 매트릭스는 diglycidyl ether of bisphenol A (DGEBA, 에폭시 수지), 4,4'-methylene dianiline (MDA, 경화제) 및 malononitrile (MN, 사슬 확장제)로 구성되어 있다. 천연 벤토나이트의 양이온 교환능력, 비표면적, 팽윤도 등의 물성을 분석하였고, 유기화제의 층간 삽입량을 계산하기 위해서 열중량 분석을 하였다. 그리고, 유기화제 처리 및 복합재료화 과정에서 벤토나이트 층간 거리를 측정하기 위해서 WAXD 분석을 하였다. ODTMA로 처리한 벤토나이트의 층간 거리가 가장 멀어졌고, 에폭시 수지에 도입함으로써 나노 복합재료를 합성할 수 있었다.
A natural bentonite from Kampo area in Korea was purified and treated with various organosurfactants: 1-butyl amine (BA), 1-octyl amine (OA), 1-hexadecylamine (HDA), 1-octadecylamine (ODA), cetyltrimethylammonium bromide (CTMA), and octadecyltriethylammonium bromide (ODTMA). The cation exchange capacity, specific surface area, and swelling power of the treated bentonites were determined, and the amount of organosurfactant in the interlayer was measured by thermogravimetric analysis (TGA). WAXD analysis was used to estimate the interlayer distance of an organobentonite and epoxy nanocomposite. The distance of the ODTMA-treated bentonite was wider than that of the others. An epoxy nanocomposite was prepared by introducing the ODTMA-treated bentonite to an epoxy matrix composed of diglycidyl ether of bisphenol A (DGEBA, epoxy base resin), 4,4'-methylene dianiline (MDA, curing agent) and malononitrile (MN, chain extender).
  1. Lee JY, Shim MJ, Kim SW, Polym. Eng. Sci., 39(10), 1993 (1999) 
  2. Seckin T, Gultek A, Icduygu MG, Onal Y, J. Appl. Polym. Sci., 84(1), 164 (2002) 
  3. Lin F, Bhatia GS, Ford JD, J. Appl. Polym. Sci., 49, 1901 (1993) 
  4. Hwu JM, Jiang GJ, Gao ZM, Xie W, Pan WP, J. Appl. Polym. Sci., 27, 1114 (1993)
  5. Suh DJ, Park OO, J. Appl. Polym. Sci., 83(10), 2143 (2002) 
  6. Zilg C, Mulhaupt R, Finter J, Macromol. Chem. Phys., 200, 661 (1999) 
  7. Zhang LQ, Wang YZ, Wang YQ, Sui Y, Yu DS, J. Appl. Polym. Sci., 78(11), 1873 (2000) 
  8. Artzi N, Nir Y, Narkis M, Siegmann A, J. Polym. Sci. B: Polym. Phys., 40(16), 1741 (2002) 
  9. Tyan HL, Wei KH, Hsieh TE, J. Polym. Sci. B: Polym. Phys., 38(22), 2873 (2000) 
  10. Varlot K, Reynaud E, Kloppfer MH, Vigier G, Varlet J, J. Polym. Sci. B: Polym. Phys., 39(12), 1360 (2001) 
  11. Rong J, Jing Z, Li H, Sheng M, Macromol. Rapid Commun., 22, 329 (2001) 
  12. Hwu JYHM, Jiang GJ, Gao ZM, Xie W, Pan WP, J. Appl. Polym. Sci., 83(8), 1702 (2002) 
  13. Liu XH, Wu QJ, Polymer, 43(6), 1933 (2002) 
  14. Gracs JM, Moll DJ, Bicerano J, Fibiger R, McLeod DG, Adv. Mater., 12, 1835 (2000) 
  15. Lee JY, Cho SR, Lee HK, Shim MJ, Lee JS, Kim SW, Korean J. Mater. Res., 5, 1035 (1995)
  16. Rhoades JD, Methods of Soil Analysis, ed. A.L. Page, 181, Agronomy (1982)
  17. Kellomaki A, Nieminen P, Ritamaki L, Clay Miner., 22, 297 (1987) 
  18. Theug KG, Formation and Properties of Clay-Polymer Complexes, 110, Elsevier (1979)
  19. Weaver CE, Pollard LD, The Chemistry of Clay Minerals, 69, Elsevier (1973)
  20. Oiuma K, Kobayashi K, Proc. 14th National Conference on Clays and Clay Minerals, 209, Pergamon Press, New York (1996)
  21. Karaborni S, Smit B, Heidug W, Urai J, Vanoort E, Science, 271(5252), 1102 (1996)