화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.14, No.6, 824-830, October, 2003
촉매담체로 활성탄소섬유복합체를 이용한 도데실벤젠의 합성
The Synthesis of Dodecylbenzene using Activated Carbon Fiber Assembiles as a Catalytic Support
E-mail:
초록
Activated carbon fiber assembiles를 촉매담체로 이용하여 벤젠을 1-dodecene과 알킬화 반응을 진행시켜 dodecylbenzene을 합성하였다. 본 연구의 목적은 현재 주로 사용되고 있는 강산촉매를 대치할 수 있는 고체상 촉매를 개발하는데 있고, 촉매담체로 사용한 활성탄소섬유복합체는 미세공에 황산을 함침 시킴으로써 산과 탄화수소의 접촉효율을 급격히 증가시킬 뿐만 아니라 장치부식 및 환경오염을 감소시키는 역할을 하게 된다. 벤젠과 1-dodecene의 알킬화 최적반응조건이 반응시간 20 min, 반응온도 25 ℃, 촉매양 0.4 g, 산함침량은 5 wt%, 벤젠과 1-dodecene의 비율을 8.5 임을 알 수 있었고 이 때 59.7% 정도의 높은 전환율을 나타내었다. 벤젠과 1-dodecene의 알킬화 반응시 산촉매와 벤젠/1-dodecene의 비율이 반응온도, 반응시간보다 전환율을 증가시키는 주된 요소임을 알았다.
Dodecylbenzene was synthesized by the alkylation of benzene with 1-dodecene over pan-phenolic activated carbon fiber assemblies as the catalytic support. The objectives of this research was the development of a solid heterogeneous catalyst to replace the traditional catalysts used in the present alkylation of aromatics systems. We were able to greatly improve the contact efficiency of the hydrocarbon with the acid. By containing the acids in the micropores of the activated carbon fiber assemblies, we minimized the problems of metal corrosion or disastrous spill. The optimal reaction time, reaction temperature, catalyst amount, impregnated acid and benzene/1-dodecene mol ratio were 20 min, 25 ℃, 0.4 g, 5 wt% and 8.5, respectively. With these conditions, the conversion rate(%) of 2-phenyl dodecane was 59.7%.
  1. Cao Y, Kessas R, Naccache C, Ben Taarit Y, Appl. Catal. A: Gen., 184(2), 231 (1999) 
  2. Liang W, Jin Y, Wang Z, Zeolites, 17, 297 (1996) 
  3. Meriaudeau P, Bentaarit Y, Thangaraj A, Almeida JL, Naccache C, Catal. Today, 38(2), 243 (1997) 
  4. Wang LW, Yu Y, Jin Z, Wang Y, J. Chem. Ind. Eng., 46(1), 100 (1995)
  5. Liang WG, Yu ZQ, Jin Y, Wang ZW, Wang Y, He MY, Min EZ, J. Chem. Technol. Biotechnol., 62(1), 98 (1995) 
  6. Pittman CU, Jiang W, Yue ZR, Carbon, 37, 85 (1999) 
  7. Zinner LB, Ishige K, Araujo M, J. Alloys Compounds, 193(1-2), 65 (1993) 
  8. Mangun CL, Daley MA, Braatz RD, Economy J, Carbon, 36, 123 (1998) 
  9. Daley MA, Tandon D, Economy J, Carbon, 34(10), 1191 (1996) 
  10. Daley MA, Mangun CL, Debarr JA, Carbon, 35(3), 411 (1997) 
  11. Debarr JA, Lizzio AA, Daley MA, Energy Fuels, 11(2), 267 (1997) 
  12. Alul HR, Ind. Eng. Chem. Prod. Res. Dev., 7(1), 7 (1968) 
  13. Dealmeida JL, Dufaux M, Taarit YB, Naccache C, Appl. Catal. A: Gen., 114(1), 141 (1994) 
  14. Da Z, Magnoux P, Guisnet M, Catal. Lett., 61(3-4), 203 (1999) 
  15. Kim TY, Yeon IJ, Baek IH, Nam KC, Economy J, J. Korean Ind. Eng. Chem., 14(1), 61 (2003)
  16. Daley MA, Mangun CL, Economy J, Low-Cost ACF Assemblies for Control of Contaminants from Air/Water, 89th Annual Meeting & Exhibition, Nashuille, Tenessee, June 23 (1996)
  17. Foster K, Rood MJ, Economy J, Comparison of Experimental and Modeled Results Describing Adsorption Isotherms and Break through Times for VOC on ACFs, 86th Annual Meeting & Exhibition, Denver, Colorado, June, 13 (1993)
  18. U.S. Patent, 3,903,220 (1975)
  19. Liang WG, Yu ZQ, Jin Y, Wang ZW, Wang Y, He MY, Min EZ, J. Chem. Technol. Biotechnol., 62(1), 98 (1995) 
  20. SouzaSantos VLC, Raymund CC, Tavares T, Aquatic Ecosystem Health Management, 3, 481 (2000)