화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.14, No.6, 852-856, October, 2003
제올라이트를 담지시킨 허니컴 흡착로타를 사용한 회전식 흡착장치의 톨루엔과 MEK 흡착거동
Toluene and MEK Adsorption Behaviors of Rotary Adsorption System with Zeolite-Impregnated Honeycomb Rotor Installed
E-mail:
초록
톨루엔과 MEK의 흡착특성이 우수한 제올라이트-Y와 ZSM-5 분말을 7:3으로 혼합하여 세라믹종이로 만든 원통형의 허니컴에 담지시킨 후 담지특성을 분석하였고, 흡착, 재생, 냉각영역으로 구분되어진 회전식 흡착장치를 이용하여 톨루엔과 MEK에 대한 흡착 및 농축특성을 고찰하였다. 회전식 흡착장치의 흡착로타를 3 rph로 회전하면서 흡착영역에 톨루엔과 MEK의 농도가 350 ppmv인 오염공기를 유속 1.22 m/s로 각각 공급하였을 때 제거효율은 모두 95% 이상을 나타내었으며, 170 ℃의 재생공기를 이용하여 흡착영역에서 흡착된 VOC를 탈착시켰을 때 6배 이상의 농축비를 보여 주었다. 또한 압력강하는 과립 흡착제를 충진한 고정탑과 동일조건에서 비교했을 때 30% 정도를 나타내었다.
For volatile organic compound recovery, a cylindrical adsorption rotor (φ = 60 cm, h = 40 cm) was fabricated and then the adsorption-regeneration behaviors of toluene and MEK were investigated in a semi-pilot scaled rotary adsorption system. The adsorption rotor was prepared by impregnating a mixed particulate zeolite adsorbent (Na-Y : ZSM-5 = 7 : 3) into a virginal honeycomb cylinder made of ceramic fibers. For 350 ppmv toluene and MEK laden streams of 1.22 m/s, the adsorption rotor of 3 rph showed excellent VOC adsorption behaviors (95% for toluene and 96% for MEK), and VOC molecules adsorbed in the rotor were easily regenerated by hot clean air at 170 ℃. In the regenerated stream, VOC concentrations were enriched by about 6 times higher than those in the VOC laden streams, which could be treated by a catalytic combustion process for VOC removal. Also, the pressure difference between laden and purified streams was very small, 20 mmHg more or less. In the present study, it is emphasized that the prepared cylindrical adsorption rotor has high application potential for a VOC removal process.
  1. Macabe WL, Harriot P, Unit Operations of Chemical Engineering, Fifth ed., 151, McGraw-Hill, New York (1993)
  2. Mitsuma Y, Ota Y, Hirose T, J. Chem. Eng. Jpn., 31(3), 482 (1998) 
  3. Kuma T, Ota Y, Removal Efficiency of Volatile Organic Compounds, VOCs, by Ceramic Honeycomb Rotor Adsorbents, Fundamentals of Adsorption, M.D. Levan(ed.), Kluwer Academic Publishers, Boston, Massachusetts, 481 (1966)
  4. Kodama A, J. Chem. Eng. Jpn., 26(5), 530 (1993) 
  5. Mitsuma Y, Yamauchi H, Hirose T, J. Chem. Eng. Jpn., 31(2), 253 (1998) 
  6. Mitsuma Y, Kuma T, J. Chem. Eng. Jpn., 16(8), 441 (1997)
  7. Kodama A, Goto M, Hirose T, Kuma T, J. Chem. Eng. Jpn., 27(5), 644 (1994) 
  8. Ichiura H, Okamura N, Kitaoka T, Tanaka H, J. Mater. Sci., 36(20), 4921 (2001) 
  9. Yoo YJ, Kim HS, Adsorption and Desorption Dynamics of Toluene on High Silica Zeolite Honeycomb Adsorbent, Korean. Soc. Energy Proceedings on Spring Symposium, 307 (2000)
  10. Yoo YJ, Kim HS, Korean Theor. Appl. Chem. Eng., 6(2), 4361 (2000)
  11. Kuma T, J. Chem. Eng. Jpn., 24(2), 248 (1998)
  12. Yoo YJ, Kim HS, J. Korean Ceram. Soc., 39(11), 1035 (2002)
  13. Kuma T, A Gas Adsorption Element, Its Manufacture Method and Usage, European Patent, Appl., 3,114,468 (1991)
  14. Kuma T, Method of Manufacturing a Gas Adsorption Element or a Catalyst Carrier Having a Honeycomb Structure, U.S. Patent, 5,194,414 (1992)
  15. Yoo YJ, Kim HS, J. Korean Ceram. Soc., 39(11), 1042 (2002)
  16. Korean Patent, 0079312 (2002)