화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.14, No.8, 1011-1022, December, 2003
TiO2 광촉매 반응 연구
Studies on TiO2 Photocatalytic Reactions
E-mail:
초록
반도체 광촉매는 태양에너지 전환, 환경오염물질 분해, 초친수성 및 자정기능 소재 등으로 최근 활발히 연구되고 있는 분야이다. 광촉매 연구는 기초 및 응용과학 분야에 걸쳐 매우 다양한 관점에서 진행되고 있으며 관련 연구자들의 학문적 배경도 매우 다양한 학제적 성격을 띠고 있다. 본 총설에서는 광촉매로 가장 널리 사용되고 있는 TiO2의 특성에 대하여 개관하고, 이를 이용하여 본 연구실에서 수행한 여러가지 난분해성 오염물질들의 광촉매 분해반응 연구 사례들을 소개한다. 기술된 광촉매 분해반응은 액체/TiO2, 기체/TiO2, 고체/TiO2 계면 시스템을 모두 포함하며 대상 물질들은 다이옥신, 유기염소화합물, 암모니아, 비소이온, 일산화탄소, 검댕, 고분자 필름 등 이다. 광촉매 상에서의 오염물질 분해반응은 대부분의 경우 표면에서 생성된 OH 라디칼의 강력한 산화력에 기인하나, 전체적인 메커니즘은 OH 라디칼 뿐만 아니라 공유대 정공, 전도대 전자, O2, superoxides (O2-, HO2)등이 관련되는 일련의 산화환원 표면반응이 복잡하게 연계되어 일어난다. 광촉매 분해반응 메커니즘은 대상물질에 따라 매우 다양한 양상을 보이며 일반화시키기 매우 어렵다. 또한, TiO2광촉매에 가시광 활성을 부여하기 위하여 제조된 ruthenium complex-sensitized TiO2의 특성과 가시광 반응 활성, 표면에서의 광여기 전자전이 반응을 증대시키기 위해 제조된 surface platinized TiO2 (Pt/TiO2)의 특성과 몇 가지 광촉매 반응 시스템들에서의 메카니즘과의 관련성 등을 논한다.
Semiconductor photocatalysts are actively investigated for their applications to solar energy conversion, environmental pollutant degradation, superhydrophilic and self-cleaning materials, etc. Current research activities on photocatalysis involve both very basic and sophisticated applied sciences over very diverse issues and are highly interdisciplinary in their nature. In this paper, the characteristics of TiO2, the most popular photocatalyst, are briefly described and selected studies, which are carried out in this group, on the degradation of various recalcitrant pollutants using TiO2 photocatalyst are reviewed. The photocatalytic pollutant degradation reactions discussed in this paper involve liquid/TiO2, gas/TiO2, and solid/TiO2 interfaces and the target substrated include polychlorinated dibenzo-p-dioxins, chlorinated organic compounds, ammonia, arsenites, carbon monoxide, soot, and polymer films. In many cases, the strong oxidizing power of TiO2 photocatalyst is mainly ascribed to OH radicals photogenerated on TiO2 surface. However, the overall degradation mechanisms that involve not only OH radicals but also valence band holes, conduction band electrons, O2, and superoxides are very complex and are hardly generalized because the reported photocatalytic mechanisms are widely varying depending on the kind of substrates. In addtion, characteristics and photocatalytic reactions of ruthenium complex-sensitized TiO2 having visible light activity and surface platinized TiO2 are discussed.
  1. Fujishima A, Honda K, Nature, 238, 37 (1972) 
  2. Hoffmann MR, Martin ST, Choi WY, Bahnemann DW, Chem. Rev., 95(1), 69 (1995) 
  3. Photocatalytic Purification and Treatment of Water and Air, eds. D.F. Ollis and H. Al-Ekabi, Elsevier, Amsterdam (1993)
  4. Choi W, Hong SJ, Chang YS, Cho Y, Environ. Sci. Technol., 34, 4810 (2001) 
  5. Kim S, Choi W, Environ. Sci. Technol., 36, 2019 (2002) 
  6. Lee H, Choi W, Environ. Sci. Technol., 36, 3872 (2002) 
  7. Wang R, Hashimoto K, Fujishima A, Chikuni M, Kojima E, Kitamura A, Shimohigoshi M, Watanabe T, Nature, 388(6641), 431 (1997) 
  8. Sunada K, Kikuchi Y, Hashimoto K, Fujishima A, Environ. Sci. Technol., 32, 726 (1998) 
  9. Minabe T, Fujishima A, Nakajima A, Watanabe T, Hashimoto K, Electrochemistry, 68, 779 (2000)
  10. Nakajima A, Hashimoto K, Watanabe T, Takai K, Yamauchi G, Fujishima A, Langmuir, 16(17), 7044 (2000) 
  11. Watanabe T, Nakajima A, Wang R, Minabe M, Koizumi S, Fujishima A, Hashimoto K, Thin Solid Films, 351(1-2), 260 (1999) 
  12. Sakai N, Fujishima A, Watanabe T, Hashimoto K, J. Phys. Chem. B, 105(15), 3023 (2001) 
  13. Tatsuma T, Takeda S, Saitoh S, Ohko Y, Fujishima A, Electrochem. Commun., 5, 793 (2003) 
  14. Zhi JF, Wang HB, Fujishima A, Ind. Eng. Chem. Res., 41(4), 726 (2002) 
  15. Fujishima A, Hashimoto K, Watanabe T, TiO2 Photo-catalysis: Fundamentals and Applications, BKC, Tokyo, Japan (1999)
  16. 다게우찌 고우지, 무라사와 사다오, 이부스키 다가시, 광촉매의 세계, 김영도 옮김, 대영사 (2000)
  17. Ohko Y, Saitoh S, Tatsuma T, Fujishima A, J. Electrochem. Soc., 148(1), B24 (2001) 
  18. Zou Z, Ye J, Syama K, Arakawa H, Nature, 414, 625 (2001) 
  19. Khan SUM, Al-Shahry M, Ingler WB, Science, 297, 2243 (2002) 
  20. Kim HG, Hwang DW, Kim J, Kim YG, Lee JS, Chem. Commun., 1077 (1999) 
  21. Anpo M, Chiba K, J. Mol. Catal., 74, 207 (1992) 
  22. Yamada H, Shiga A, Kawasaki S, Ichihashi Y, Ehara S, Anpo M, Energy Conv. Manag., 36, 617 (1995) 
  23. Rusina O, Eremenko A, Frank G, Strunk HP, Kisch H, Angew. Chem.-Int. Edit., 40, 3993 (2001) 
  24. O'Regan B, Grtzel M, Nature, 353, 737 (1991) 
  25. Hagfeldt A, Gratzel M, Chem. Rev., 95(1), 49 (1995) 
  26. Kayanasundaram K, Vlachopoulos N, Krichnan V, Monnier A, Grtzel M, J. Phys. Chem., 91, 2342 (1987) 
  27. Cherepy NJ, Smestad GP, Gratzel M, Zhang JZ, J. Phys. Chem. B, 101(45), 9342 (1997) 
  28. Yuan JN, Tsujikawa S, J. Electrochem. Soc., 142(10), 3444 (1995) 
  29. Tatsuma T, Saitoh S, Ohko Y, Fujishima A, Chem. Mater., 13, 2838 (2001) 
  30. Park H, Kim KY, Choi W, Chem. Commun., 281 (2001) 
  31. Park H, Kim KY, Choi W, J. Phys. Chem. B, 106(18), 4775 (2002) 
  32. Kikuchi Y, Sunada K, Iyoda T, Hashimoto K, Fujishima A, J. Photochem. Photobiol. A-Chem., 106, 51 (1997) 
  33. Tatsuma T, Kubo W, Fujishima A, Langmuir, 18(25), 9632 (2002) 
  34. Ishikawa Y, Matsumoto Y, Nishida Y, Taniguchi S, Watanabe J, J. Am. Chem. Soc., 125(21), 6558 (2003) 
  35. '98 에너지 기술개발동향, 광화학에너지 변환 및 활용기술 (KISTEP 조사자료 99-05), 오정무, 이경원 편저, 한국과학기술평가원 (1998)
  36. 광촉매의 국내외 산업동향 및 업체별 사업화 추진전략, 박영서, 홍성화, 김강회, 한국과학기술정보연구원 (2001)
  37. 광촉매 기술 및 시장 동향, (주) 비아글로벌, 산업자원부 기술표준원 (2003)
  38. Tan MX, Laibinis PE, Nguyen ST, Kesselman JM, Stanton CE, Lewis NS, Principles and Applications of Semiconductor Photoelectrochemistry, in Progress in Inorganic Chemistry, ed. K.D. Karlin, vol. 41, 21, John Wiley & Sons (1994)
  39. Lawless D, Serpone N, Meisel D, J. Phys. Chem., 95, 5166 (1991) 
  40. Terzian R, Serpone N, Draper RB, Fox MA, Pellizzetti E, Langmuir, 7, 3081 (1991) 
  41. Mao Y, Schneich C, Asmus KD, J. Phys. Chem., 95, 10080 (1991) 
  42. Buxton GV, The Study of Fast Processes and Transient Species by Electron Pulse Radiolysis, ed. D. Reidel, Dortrecht, The Netherlands (1981)
  43. Buxton GV, Greenstock CL, Helman WP, Ross AB, J. Phys. Chem. Ref. Data, 17, 513 (1988)
  44. Grtzel M, Heterogeneous Photochemical Electron Transfer, CRC Press, Boca Raton, FL (1988)
  45. Ding Z, Hu XJ, Lu GQ, Yue PL, Greenfield PF, Langmuir, 16(15), 6216 (2000) 
  46. Mills A, Elliott N, Parkin IP, O'Neill SA, Clark RJ, J. Photochem. Photobiol. A-Chem., 151, 171 (2002) 
  47. Luo HM, Wang C, Yan YS, Chem. Mater., 15, 3841 (2003) 
  48. Lakshmi BB, Dorhout PK, Martin CR, Chem. Mater., 9, 857 (1997) 
  49. Zhang M, Bando Y, Wada K, J. Mater. Sci. Lett., 20, 167 (2001) 
  50. Peng TY, Hasegawa A, Qiu JR, Hirao K, Chem. Mater., 15, 2011 (2003) 
  51. Yuzawa T, Kato C, Geroge MW, Hamaguchi H, Appl. Spectrosc., 48, 684 (1994) 
  52. Heimer TA, Heilweil EJ, J. Phys. Chem. B, 101(51), 10990 (1997) 
  53. Ghosh HN, Asbury JB, Lian TQ, J. Phys. Chem. B, 102(34), 6482 (1998) 
  54. Yamakata A, Ishibashi T, Onishi H, J. Phys. Chem. B, 105(30), 7258 (2001) 
  55. Yamazaki-Nishida S, Nagano KJ, Philips LA, Cerveramarch S, Anderson MA, J. Photochem. Photobiol. A-Chem., 70, 95 (1993) 
  56. Nimlos MR, Jacovy WA, Blake DM, Milne TA, Environ. Sci. Technol., 27, 732 (1993) 
  57. Choi W, Ko JY, Park H, Chung JS, Appl. Catal. B: Environ., 31(3), 209 (2001) 
  58. Peral J, Ollis DF, J. Catal., 136, 554 (1992) 
  59. Dibble LA, Raupp GB, Environ. Sci. Technol., 26, 492 (1992) 
  60. Fernandez-Ibanez P, Malato S, de las Nieves FJ, Catal. Today, 54(2-3), 195 (1999) 
  61. Sanchez L, Peral J, Domenech X, Appl. Catal. B: Environ., 19(1), 59 (1998) 
  62. Klare M, Waldner G, Bauer R, Jacobs H, Broekaert JAC, Chemosphere, 38, 2013 (1999) 
  63. Stock NL, Peller J, Vinodgopal K, Kamat PV, Environ. Sci. Technol., 34, 1747 (2000) 
  64. Hess TF, Lewis TA, Crawford RL, Katamnemi S, Wells JH, Watts RJ, Water Res., 32, 1481 (1998) 
  65. Zhang ZS, Anderson WA, Moo-Young M, J. Chem. Technol. Biotechnol., 77(2), 190 (2002) 
  66. Sakai H, Baba R, Hashimoto K, Kubota Y, Fujishima A, Chem. Lett., 3, 185 (1995) 
  67. Blake DM, Maness PC, Huang Z, Wolfrum EJ, Huang J, Jacoby WA, Sep. Purif. Methods, 28(1), 1 (1999)
  68. Kaliya OL, Lukyanets EA, Vorozhtsov GN, J. Porphysins Phthalocyanines, 3, 592 (1999) 
  69. Sunada K, Watanabe T, Hashimoto K, J. Photochem. Photobiol. A-Chem., 156, 227 (2003) 
  70. Sunada K, Watanabe T, Hashimoto K, Environ. Sci. Technol., 37, 4785 (2003) 
  71. Fox MA, Dulay MT, Chem. Rev., 93, 341 (1993) 
  72. Linsebigler AL, Lu GQ, Yates JT, Chem. Rev., 95(3), 735 (1995) 
  73. Peral J, Domenech X, Ollis DF, J. Chem. Technol. Biotechnol., 70(2), 117 (1997) 
  74. Mills A, Le Hunte S, J. Photochem. Photobiol. A-Chem., 108, 1 (1997) 
  75. Bibliography of Work on the Photocatalytic Removal of Hazardous Compounds from Water and Air (NREL/TP-430-6084), ed. D.M. Blake, National Renewable Energy Laboratory, Golden, Colorado, U.S.A. (1994)
  76. Bibliography of Work on the Photocatalytic Removal of Hazardous Compounds from Water and Air (NREL/TP-570-26797), ed. D.M. Blake, National Renewable Energy Laboratory, Golden, Colorado, U.S.A. (1999)
  77. Bibliography of Work on the Photocatalytic Removal of Hazardous Compounds from Water and Air (NREL/TP-510-31319), ed. D.M. Blake, National Renewable Energy Laboratory, Golden, Colorado, U.S.A. (2001)
  78. Wayne RP, Chemistry of Atmosphere, 3rd ed., Oxford University Press, Oxford (2000)
  79. Kormann C, Bahnemann DW, Hoffmann MR, Environ. Sci. Technol., 25, 494 (1991) 
  80. Cho S, Choi W, J. Photochem. Photobiol. A-Chem., 143, 221 (2001) 
  81. Lee NC, Choi WY, J. Phys. Chem. B, 106(45), 11818 (2002) 
  82. Choi W, Hoffmann MR, Environ. Sci. Technol., 29, 1646 (1995) 
  83. Choi W, Hoffmann MR, Environ. Sci. Technol., 31, 89 (1997) 
  84. Borgarello E, Kiwi J, Gratzel M, Pelizzetti E, Visca M, J. Am. Chem. Soc., 104, 2996 (1982) 
  85. Kisch H, Zang L, Lange C, Maier WF, Antonius C, Meissner D, Angew. Chem.-Int. Edit., 37, 3034 (1998) 
  86. Zang L, Lange C, Abraham I, Storck S, Maier WF, Kisch H, J. Phys. Chem. B, 102(52), 10765 (1998) 
  87. Zang L, Maycyl W, Lange C, Maier WF, Anonius C, Meissner D, Kisch H, Chem. Eur. J., 6, 379 (2000) 
  88. Klosek S, Raftery D, J. Phys. Chem. B, 105(14), 2815 (2001) 
  89. Kato H, Kudo A, J. Phys. Chem. B, 106(19), 5029 (2002) 
  90. Ashahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y, Science, 293, 269 (2001) 
  91. Choi WY, Termin A, Hoffmann MR, J. Phys. Chem., 98(51), 13669 (1994) 
  92. Kay A, Humphrybaker R, Gratzel M, J. Phys. Chem., 98(3), 952 (1994) 
  93. Patrick B, Kamat PV, J. Phys. Chem., 96, 1423 (1992) 
  94. Kamat PV, Langmuir, 6, 512 (1990) 
  95. Kamat PV, Charuvet JP, Fessesden RW, J. Phys. Chem., 90, 1389 (1986) 
  96. Cho Y, Choi W, Lee CH, Hyeon T, Lee HI, Environ. Sci. Technol., 35, 966 (2001) 
  97. Bae E, Choi W, Environ. Sci. Technol., 37, 147 (2003) 
  98. Park H, Choi W, J. Phys. Chem. B, 107(16), 3885 (2003) 
  99. Choi W, Lee J, Kim S, Hwang S, Lee MC, Lee TK, J. Ind. Eng. Chem., 9(1), 96 (2003) 
  100. Lee J, Park H, Choi W, Environ. Sci. Technol., 36, 5462 (2002) 
  101. Kim S, Choi W, J. Phys. Chem. B, 106(51), 13311 (2002) 
  102. Hwang S, Lee MC, Choi W, Appl. Catal. B: Environ., 46, 49 (2003)