화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.14, No.8, 1038-1045, December, 2003
혼합계면활성제를 이용한 W/O 에멀젼법하에 응집현상이 제어된 구형의 알루미나 미분체의 제조
Preparation of Spherical and Fine Alumina Powder with Controlled Aggregation under W/O Emulsion Method using Mixed Surfactants
E-mail:
초록
연소공정이 포함된 W/O 에멀젼법하에 혼합계면활성제의 종류 및 조성변화에 의하여 제조된 알루미나 분체의 평균 입자크기, 입자형상, 분체의 균일도 등의 변화를 연구하였다. 주계면활성제로 SP80을, 혼합계면활성제로 [SP80 & TW20] 및 [SP80 & TW80]을 사용하였다. 결과로서, 교반속도 500 rpm 하에서는 계면활성제의 종류 및 조성을 변화시킴에도 불구하고 일정한 계면활성제의 총 함량과 각각의 O:W 부피비에서 제조된 알루미나 분체의 입자형상과 크기는 큰 변화가 없었다. 그러나, 2000 rpm, 계면활성제 총 함량이 HLBm= 5인 1 vol.% 및 2 vol.% [SP80 & TW20] 와 [SP80 &TW80]및 O:W 부피비 8:1인 조건하에서 제조된 구형 알루미나 분체는 동일한 조건하에서 단일계면활성제 SP80만을 사용하였을 경우에 비하여 평균 입자크기가 상당히 감소하였고 좁은 입도분포를 보이고 있었다. 이러한 효과는 [SP80 & TW20]을 사용한 경우보다는 [SP80 & WT80]을 사용하였을 경우 더욱 향상되었다. 또한, 4000 rpm 및 O:W = 8:1.5 하에서 2.5 vol.% SP80만을 사용하여 제조된 알루미나 분체간의 심한 합체현상은 HLBm= 5인 [SP80 & TW80]의 2.5 vol.%인 혼합계면활성제를 사용함으로서 현저하게 감소되었다.
Effects of the type and the composition of surfactant mixtures on morphology, average particle size and particle size distribution of α-alumina prepared by W/O emulsion method including combustion method were investigated. SP80 was used as a main surfactant, [SP80 & TW20] as well as [SP80 & TW80] as surfactant mixtures. As results, the above properties of alumina powder prepared by using low mechanical agitation speed, 500 rpm, were not affected remarkably by the variation of type and composition of mixed-surfactants regardless of O:W volumetric ratio at fixed content of surfactant. However, under the conditions of 1 vol.% and 2 vol.% [SP80 & TW20] or [SP80 & TW80] of HLBm= 5, O:W = 8:1 and 2000 rpm, the average particle size became much smaller and the range of particle size distribution was narrow in comparison with those obtained from the usage of single surfactant, SP80. These effects were enhanced when [SP80 & TW80] were used instead of [SP80 & TW20]. And also, under 4000 rpm, severe coalescence phenomena among alumina powder prepared by using 2.5 vol.% SP80 for O:W = 8:1.5 were reduced drastically by using 2.5 vol.% [SP80 & TW80] of HLBm= 5.
  1. Touhami Y, Rana D, Hornof V, Neale GH, J. Colloid Interface Sci., 239(1), 226 (2001) 
  2. Tseng WJ, Teng KH, Mater. Sci. Eng., A318, 102 (2001)
  3. Porter MR, Maurice R, Handbook of Surfactants, 2nd Edn., p. 75, Chapman and Hall, U.S.A. (1994)
  4. Siladitya B, Chatterjee M, Ganguli D, J. Sol-Gel Sci. Tech., 15, 271 (1999) 
  5. Chatterjee M, Nuskar MK, Siladitya B, Ganguli D, J. Mater. Res., 15(1), 176 (2000)
  6. Dai L, Li W, Hou X, Colloids Surf. A: Physicochem. Eng. Asp., 125, 27 (1997) 
  7. Shiao SY, Chhabra V, Patist A, Free ML, Huibers PDT, Gregory A, Patel S, Shah DO, Adv. Colloid Interface Sci., 74, 1 (1998) 
  8. Wang W, Kwak JCT, Colloids Surf. A: Physicochem. Eng. Asp., 156, 95 (1999) 
  9. Khan A, Marques EF, Curr. Opin. Colloid Interface Sci., 4, 402 (2000) 
  10. Attwood D, Florence AT, Surfactant Systems: Their Chemistry, Pharmacy and Biology, p. 473, Chapman and Hall Ltd., U.S.A. (1983)
  11. Omi S, Colloids Surf. A: Physicochem. Eng. Asp., 109, 97 (1996) 
  12. Nagashima S, Ando S, Tsukamoto T, Ohishima H, Makino K, Colloids Surf. B: Biointerfaces, 11, 47 (1998) 
  13. Gu SC, Mogi T, Konno M, J. Colloid Interface Sci., 207(1), 113 (1998) 
  14. Omi S, Matsuda A, Imamura K, Nagai M, Colloids Surf. A: Physicochem. Eng. Asp., 153, 373 (1999) 
  15. Brandenberger H, Nussli D, Piech V, Widmer F, J. Electrostatics, 45, 227 (1999) 
  16. Bonet F, Delmas V, Grugeon S, Urbina RH, Silvert PY, Elhsissen KT, Nanostructured Mater., 8, 1277 (1999)
  17. Holgado M, Cintas A, Ibisate M, Serna CJ, Lopez C, Meseguer FJ, Colloid Interface Sci., 229, 6 (2000) 
  18. Reese CE, Asher SA, J. Colloid Interface Sci., 248(1), 41 (2002) 
  19. Gu S, Mogi T, Konno M, Colloids Surf. A: Physicochem. Eng. Asp., 153, 209 (1999)