Energy Conversion and Management, Vol.44, No.19, 3037-3055, 2003
Experimental and theoretical evaluation of the performance of a tar solar water heater
The paper presents an experimental and theoretical evaluation of the performance of a tar solar water heater and comparison with that of a conventional type collector. The performance of both collectors is assessed under the same conditions. Both of the collectors have the same surface area and are glazed. The conventional type has the water tubes welded to the absorber plate, whereas in the tar type, the tar acts as an absorber plate that covers the water tubes. The theoretical model for each collector type, with the transient effects taken into account, is based on a control volume and a time base in the related energy equations. By considering a small element of the collector in each case, three partial differential equations were developed for each collector and were solved numerically by the Runge-Kutta method of the fifth order. A good agreement was achieved between the numerical and experimental results for both the conventional and tar collectors, indicating the feasibility of employing the theoretical model in the design of flat plate solar collectors. The results also showed that the conventional collector is more efficient than the tar type during most of the daylight, but the tar collector had the added advantage of better conservation of energy in late afternoon and evening. (C) 2003 Elsevier Ltd. All rights reserved.