화학공학소재연구정보센터
Energy Conversion and Management, Vol.44, No.19, 3125-3141, 2003
Generation of hourly solar radiation for inclined surfaces using monthly mean sunshine duration in Algeria
Hourly global solar radiation flux incident on an inclined surface is evaluated in any site of Algeria using monthly mean daily sunshine duration measurements. The methodology used consists of successive transformations of solar data, respectively, based on the exponential probability distribution of daily sunshine duration, (A) over circle ngstrom equation, beta probability distribution of hourly global solar radiation flux, polynomial correlations of hourly direct and diffuse radiation with global solar radiation and the Klucher model. Monthly mean values of daily sunshine duration data recorded in 54 meteorological stations of Algeria and hourly solar radiation data collected in Algiers, Bechar and Tamanrasset are available for this study. Knowing the monthly mean daily sunshine duration measurements, the hourly global solar radiation data are then obtained on a tilted surface for the locations of Algiers, Tamanrasset and Bechar. The monthly mean hourly global solar radiation data estimated for Algiers are in reasonably good agreement with the experimental ones. Associated with the principal component analysis, the above method has been extended to all the other meteorological stations, and monthly mean values of hourly global solar radiation flux incident on an inclined surface have been simulated for every site of Algeria. This yields an important database useful for solar energy applications. (C) 2003 Elsevier Ltd. All rights reserved.