화학공학소재연구정보센터
HWAHAK KONGHAK, Vol.36, No.6, 951-957, December, 1998
NH3에 의한 선택적 촉매환원반응에서 V2 O5/TiO2 촉매의 격자산소 거동에 관한 연구
A Study on the Behavior of Lattice Oxygen in the Selective Catalytic Reduction of NO by NH3 over V2 O5/TiO2 Catalyst
초록
NH3,를 환원제로 사용하여 고정오염원에서 발생하는 NOχ를 제거하는 선택적 촉매환원공정은 가장 효과적인 탈질공정으로 인정되고 있다. 본 연구에서는 이 공정에 사용되는 V2O5/TiO2 촉매상에서 격자산소의 탈리와 재생에 대한 연구를 수행하였다. 반응물로 산소를 공급하지 않고 NH3/N2만 공급할 때 담지율이 3 wt%이상인 V2 O5/TiO2 촉매상에서 NH3와 격자산소의 반응으로 NO가 생성되나 그 이하의 담지율에서는 NO생성이 미미한 것으로 관찰되었으며 이로부터 특정 담지율 이상에서 격자산소가 탈리됨을 확인하였다. 격자산소가 탈리된 촉매는 기상의 산소에 의하여 재생되는데 TiO2에 담지된 V2O 5의 격자산소는 온도에 관계없이 쉽게 재생되었으나 담지되지 않은 V 2O5의 격자산소는 온도가 증가할수록 재생정도가 커졌다. 한편 TGA실험에서 NH3처리된 V2O5/TiO2촉매에 공기를 흘릴 때 격자산소가 재생되면서 특정담지율 이상에서 촉매의 무게가 증가하고 수분의 배출농도가 증가하는 것을 관찰하여 Bosch 등[1]이 제시한 격자산소의 탈리와 재생경로가 타당함을 입증하였다.
Selective catalytic reduction(SCR) of nitric oxides using NH3 has been recognized as one of the most effective denitrification processes to reduce NOχ from stationary sources. In this study, detachment and replenishment of lattice oxygen of V2O5/TiO2 catalyst was investigated. In the flow of NH3/N2 without gaseous oxygen, NH3 reacted with the lattice oxygen to produce NO over V2 O5/TiO2 catalyst containing more than 3 wt% V2 O5, whereas V2O5/TiO2 catalyst containing less than 3 wt% V2O5 showed insignificant NO production. This indicates that lattice oxygen detaches from V2O5/TiO2 catalysts having more than a certain amount of V2O5. Lattice oxygen-detached catalysts were regenerated by gaseous oxygen. Lattice oxygen of V2O5 impregnated on TiO2 was easily regenerated regardless of the temperature, but in the bulk V2O5, increasing the regeneration temperature leads to an increase in the degree of regeneration. From the results of TGA analysis conducted in a flow of oxygen, NH3 pre-treated V2O5/TiO2 catalyst containing more than a certain amount of V2O5 showed an increase of the catalyst weight as well as an increase in the H2O concentration. This observation may be considered to support the reaction paths for detachment and replenishment of lattice oxygen proposed by Bosch et at.[1].
  1. Bosch H, Janssen FJJG, van den Kerkhof FMG, Oldenziel J, van Ommen JG, Ross JRH, Appl. Catal., 25, 239 (1986) 
  2. Bosch H, Janssen F, Catal. Today, 2, 369 (1988) 
  3. Shin BS, Lim SY, Choung SJ, Korean J. Chem. Eng., 11(4), 254 (1994)
  4. Ozkan US, Kumthekar MW, Cai YP, Ind. Eng. Chem. Res., 33(12), 2924 (1994) 
  5. Nam IS, Catalysis, 11(1), 8 (1995)
  6. Lee BY, Lee CW, Bae JH, Shin BS, Choung SJ, HWAHAK KONGHAK, 35(4), 565 (1997)
  7. Choi H, Ham SW, Nam IS, Kim YG, Sim JH, Ha BH, HWAHAK KONGHAK, 34(1), 91 (1996)
  8. Wong WC, Nobe K, Ind. Eng. Chem. Prod. Res. Dev., 25, 179 (1986) 
  9. Hattori T, Murakami Y, J. Catal., 10, 114 (1968) 
  10. Miyamoto A, Yamazaki Y, Hattori T, Inomata M, Murakami Y, J. Catal., 74, 144 (1982) 
  11. Rajadhyaksha RA, Hausinger G, Zeilinger H, Ramstetter A, Schmelz H, Knozinger H, Appl. Catal., 51, 67 (1989) 
  12. Gasior M, Haber J, Machej T, Czeppe T, J. Mol. Catal., 43, 359 (1988) 
  13. Ozkan US, Cai YP, Kumthekar MW, J. Catal., 149(2), 375 (1994) 
  14. Ramis G, Busca G, Bregani F, Forzatti P, Appl. Catal., 64, 259 (1990) 
  15. Odriozola JA, Heinemann H, Somorjai GA, Garcia de la Banda JF, Pereira P, J. Catal., 119, 71 (1989) 
  16. Bosch H, Kip BJ, van Ommen JG, Gellings PK, J. Chem. Soc.-Faraday Trans., 80, 2479 (1984) 
  17. Haber J, Kozlowska A, Kozlowski R, J. Catal., 102, 52 (1986) 
  18. Bauerle GL, Wu SC, Nobe K, Ind. Eng. Chem. Prod. Res. Dev., 17, 117 (1978) 
  19. Pearson IM, Ryu H, Wong WC, Nobe K, Ind. Eng. Chem. Prod. Res. Dev., 22, 381 (1983) 
  20. Shikada T, Fujimoto K, Kunugi T, Tominaga H, Kaneko S, Kubo Y, Ind. Eng. Chem. Prod. Res. Dev., 20, 91 (1981) 
  21. Efstathiou AM, Fliatoura K, Appl. Catal. B: Environ., 6(1), 35 (1995) 
  22. Lietti L, Forzatti P, J. Catal., 147(1), 241 (1994)