Journal of Polymer Science Part B: Polymer Physics, Vol.41, No.13, 1526-1537, 2003
Effect of pressure and temperature history on volume relaxation of amorphous polystyrene
Control of volume changes with time has a critical industrial relevance for the production of objects made of thermoplastic materials (obtained, e.g., by injection molding), but this phenomenon is completely disregarded by commercial codes for simulation of processes. In this work, attention is focused on the relevance of thermo-mechanical history on volume relaxation at room conditions of an amorphous polystyrene. A set of data of volume relaxation of samples obtained in an extremely wide range of thermomechanical treatments was collected. Data were analyzed with the aim of applying a simplified model on the basis of the well-known KAHR model, which describes the postprocessing volume relaxation of amorphous polymers by adopting a minimum number of material parameters. Despite the fact that only two relaxation times are considered, the model satisfactorily describes volume evolution (either contraction or expansion) at room conditions after a given thermomechanical treatment if an appropriate partition of free volume into two fractions is provided. Furthermore, in its present form that neglects the effect of pressure on volume relaxation, the model satisfactorily describes the effect of a given thermal treatment (at room pressure), starting from the melt, on both specific volume and its relaxation rate after treatment. (C) 2003 Wiley Periodicals, Inc.