Journal of Power Sources, Vol.116, No.1-2, 185-192, 2003
New lead alloys for high-performance lead-acid batteries
Consumers require lead-acid batteries with a high level of reliability, low cost and improved life, and/or with less weight and good tolerance to high-temperature operation. To reduce the thickness (weight) of the grids, the alloy materials must exhibit higher mechanical properties and improved corrosion resistance. In this study, the performance of negative and positive grids is evaluated in battery tests. The results demonstrate that continuously cast and expanded grids made from barium-doped lead-calcium-tin alloys meet performance requirements. For negative grids, improvement in the mechanical properties can lead to reliable thinner grids. For positive grids, the alloys exhibit improved mechanical properties and greater corrosion resistance. These features provide extremely good creep behaviour during battery operation such that performance under the hot SAE J240 test is superior to that achieved previously with expanded grids. (C) 2003 Elsevier Science B.V. All rights reserved.